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ABSTRACT: Optimal design of Oxygen production system along with production rate, pressure in
storage tank, compressor power and storage tank volume constraints were formulated in this study. In
formulated optimization Oxygen production system the constraints were handled by using the exterior
penalty functions. The derivative free methods were used for the optimization of this formulated
problem. The methods were basically designed for unconstrained optimization problems. The optimum
results of the Oxygen production optimization model were obtained by using MATLAB programming
environment which demonstrated the effectiveness and applicability of the model. It was observed that
the results of Nelder-Mead method were better than Hooke-Jeeves method. Nelder-Mead method was
more efficient with respect to its function value and its number of function evaluations.
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INTRODUCTION

The optimization problems arise in almost all
areas of real life like manufacturing, scheduling, business
and engineering. By using optimization techniques the
best solutions of the problems are obtained by utilizing
minimum amount of limited resources (Ronald, 2002).

Optimization techniques are mainly divided into
two categories i.e. Derivative Based Methods (DBMs)
and Derivative Free Methods (DFMs) which are being
frequently used in practical optimization (Tabassum et
al., 2015). In this study the focus is on two direct search
methods, namely, Nelder-Mead (NM) method and
Hooke-Jeeves (HJ) method as has been reported by
(Edger et al., 1988, William, 2001, Arora, 2004 and Isaac
and Makoto, 2010). These methods are basically
designed for solving un-constrained optimization
problems. However these methods can also be applied to
constrained optimization problems by changing them into
unconstrained optimization problems. A traditional way
for this purpose is the use of penalty function approach.
Penalty functions depend on degree of constraint
violation and the penalty factor which raises the objective
function value for every infeasible solution and lowers
the penalized objective function value for every solution
nearer to the feasible region (Deb, 2003).

In the past when the derivatives of functions
were taxing to calculate, the direct search methods were
popular, but recently, the researchers have developed
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numerous tools for robust and automatic differentiation
as well as modeling languages that compute derivatives
automatically (Lagarias et al., 1998 and Price et al.,
2002). In spite of all this, direct search method has its
own importance. Particularly the maturation of
simulation-based optimization has made it difficult to use
derivative based method. Moreover, DBM cannot be
applied to the problems in which the objective functions
are not numeric in nature. An example of such problems
is like optimal configuration of N-Queens on a square
chess-board problem (Ali el al., 2015). The researchers
have proposed a verity of DFM for diverse problems of
practical optimization (Hooke and Jeeves, 1961, Joines
and Houck, 1994 and Coello, 1999).

To change the constrained optimization into un-
constrained one, by adding or subtracting the values from
the objective functions is reported by (Deb, 2005).

In this script a mathematical model of Oxygen
production system for minimum cost is reformulated and
selected as a test case for the capabilities of NM and HJ
methods. So far no such applications of these methods to
such a challenging engineering optimization problem
have been found. For selecting the best method there is a
necessity to conduct comparative studies of their
potential applications to modern world problems, like the
one formulated in this study.
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MATERIALS AND METHODS

The motivation for this research was to modify
Oxygen production model. The derivative free methods
were used for the optimization of Oxygen production
model. These methods were basically designed for
unconstrained optimization problems. In formulated
optimization Oxygen production model the constraints
were handled by using exterior penalty functions.

Hooke-Jeeves Method: For an N-dimensional problem
HJ method required an initial point x,, a set of N linearly
independent search directions v;, step-length parameters
d;> 0 and a parameter pu >1. The method used two types
of moves given below:

Exploratory Move: This move was made on the current
point by investigation along each direction according to
the following formula:

Xnew = Xo = ojv; foralli=1,2,3,...,N.
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Fig-1. Successful exploratory move

Pattern Move: When exploratory move was completed
and was accomplished successfully then pattern move
was executed, by jumping from present base point along
with a direction connecting and a new point was found.
Once a pattern move was established it was possible to
move as much as allowed. An enlargement parameter n,
n > 1, was used for this purpose. The pattern direction
was found by the formula applied as d = 2z — z,.
Therefore the new point, through pattern move, was
found as given below

Yo=zet+ nd = ze+ N (ze—12).

Nelder-Mead Simplex Method: While considering the
initial simplex with three initial points i.e. y° = Best
Point, y* = Good Point, y¥* = Worst Point. Take the
centroid y© of best and good points. Reflect the worst
point through centroid, the y" becomes the new point,
which having equidistance from y© to y2 In this method
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there were several operations to be performed. Reflection
occurred when y* > " > y°,
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Fig-2: Pattern move direction

Mathematically, the reflected point y" was given as
y =y + 8RO - yM

and expansion occurred when y* > y° > y*,

Mathematically, the expanded point y* was given as
ye =y +6°(y = y™)

In contraction when reflection point lies between the

good and best vertex and it was generated two types.

Outside contraction occurred when y* >y > y*.

Mathematically, the expanded point y°© was given as

yOC — yC + 60(3(yc _ yn)

Inside  contraction occurred when Yy > y2

Mathematically, the expanded point y*° was given as
y'¢ = y¢ + 6% (y¢ — y™). If no one from the

above condition was satisfied then shrink was produced.

v
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Fig-3: Steps of Nelder-Mead method

Oxygen production system: In this problem the prime
objective was to minimize the cost of oxygen furnace.
This oxygen furnace was used in chemical reactor for the
supply of pure oxygen. Oxygen production system
(Ravindran et al, 2006) contained oxygen plant,
compressor and storage tank for oxygen furnace.
Different kinds of variables were assigned and different
kinds of constraints were generated, therefore the oxygen
demanded varied with respect to time interval shown in
Figure 4. Here t; was time interval for rate of low demand
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Dy and t, - t; time for rate of high demand D;. Oxygen
plants were designed to provide oxygen at a fixed rate.

Dl _——— T /= =
_______ —_—— 4 — —F
Dg | h
| |
(o] 1, t,
Time ——
D—{D" for OStStl}
"D, for t;<t<t,
Fig-4: Cycle of demand
Vent
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Basic
Oxygen
Furnace
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Fig-5: Oxygen production design

The capacity of oxygen plant = D;.

Assumptions: Oxygen furnace and demand
cycle were fixed, no external factors were imposed,
storage tank had standard design and compression of
ideal gas was isothermal.

Total annual cost = oxygen production cost +
compressor operating cost + compressor cost + storage
vessel
The model consisted on design equations that narrated
independent variables (Bett et al, 1975).

Independent variables: Oxygen plant production rate F,
The compressor H,

Storage tank design capacities V,

The maximum tank pressure p.

Imax = Mmaximum stored oxygen

By using law of corrected gas as

_ Imax RT
)
where R = gas constant,

T = gas temperature,

z = compressibility factor,

M = molecular weight of Oxygen.
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From Figure 4, maximum oxygen area under the
demand curve between t; and t, and D; and F. Thus,
[max = (Dl - F)(tz - tl) (1)

Put the value I, in above equation
— (D1 —F)(tz—tq) RT

|4 m 5 (2)
As we now that the gas flow rate = w
1
_ (D1-F)(tp-t;) RT D
H= tq kik2 n(Po) ©)

where  k; = unit conversion factor,
k, = compressor efficiency,
Po = 0xygen delivery pressure.
Rate of Oxygen plant F was sufficient, to supply the total
demand of oxygen
> (Dot1)+Dy1(t2-t1)

> (4)

)
Maximum pressure of tank > delivered Oxygen pressure
P =po(5)

Rs
Oxygen plant annual cost was Cq (year
a,F (6)

where a; and a, were empirical constants.

empirical constants = (fuel+ water+ labor) costs for

plants.

The capital cost for storage vessels

By using power correlation law, as C,(Rs) = b, V P2
7)

where b; and b, were empirical constants.

Similarly capital compressors cost attained from a

correlation was

Cs3(Rs) = b3H"+ 8

Whereas compressor power cost was approximately =

bst;H

where bs was the power cost.

Total cost function

Annualcost = a;+a, F+d (b, VP2 +bH?+) +

Nbst,H(9)

where

)=a,+

N = number of cycles per year

d =annual cost factor.
To minimize equation (9) represented complete
design optimization problem that contained a suitable
value of F, V, H, and p, cycle parameters were (N, Dy, D1,
t;, and t,), cost parameters were (a;, a,, by to bs, and d)
and physical parameters were (T, p,, k2, z and M) (Jen et
al, 1968).
By using the new variables:
z,= production rate of oxygen plant,
Z,= pressure in storage tank,
Z3= compressor power and
z,= storage tank volume.
Non- linear programming model of oxygen design
problem was as under

Minimizing Z = a; + a,z; + d(b,z3°2 + b3z,%+)
+ Nbgt,z3

Subject to
t2z1 = (Dot)+Dy(t; — t1)
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Z; 2o
I (Dy —z,)(t; — t1) RT In (ﬁ)
° ty kiky Po
5 = RTz (D — z1)(t; — t1)
T M Zy

21, 23,23, 24> 0

Table 1. Different parameters for Oxygen supply

system
Value of
Cycle Cost Physical
Parameters Parameters Parameters
N=1 a;=61.8 T=20°
D,=25 a,=5.72 po = 200
D;=40 b,=0.0175 k= 0.5
t,=0.6 b,=0.85 M=31.9999
t,=25 b;=0.0094 7z = 28.2795
b4: 0.75
bs=0.006
d=1

The final non-linear programming model of oxygen
design problem became as
Minimizing Z = 61.8 + 5.72z,
+ (0.017523°%> + 0.00942,%7°)

+0.003625
Subject to
zy = 175
z, =200
z5 = 36.25 LYy (Z2)
0.6 200

4
z, = 348300

sing penalty function (Deb, 2005)
P(x)=r(max[0,0:(x), g2x),93(x),g4(x)])

Minimizing Z = 61.8 + 5.72z;, + (0.01752,°85% +

0.00942,%7%) 4+ 0.00362z;+ 100 [max (0, [z, —17.5],

Z2

(40-21)(0.4)
[2,-200], [z —3625 208 (2] [z, -
348300 227200

RESULTS AND DISCUSSION

Direct search methods had been popular because
of their simplicity, flexibility, and reliability (Lewis et al,
2000). These methods had been shown to satisfy the first-
order necessary conditions for a minimizer i.e.,
convergence to a stationary point (Lucidi and
Mciandrone, 2002). It seemed remarkable that the given
direct search methods neither required explicit derivative
nor estimated derivative information. In most of the
direct search methods a set of directions that span the
search space was sufficient information to investigate the
local behavior of the function (Rios and Sahinidis, 2012).
To reduce the step length safely the set of directions had
been queried (Nelder and Mead, 1965).

As per study conducted by (Hellinckx and
Rijckeart, 1972 and Jen et al, 1968) have reported the
solution of the above formulated problem with different
setting of parameters. The Oxygen production system
was solved by using geometric programming approach
considering smaller values of the parameters. The best
solution of the problem also gave the minimum cost of
$173.76 (Hellinckx and Rijckeart, 1972). The same
problem was solved by using gradient based method with
a minimum cost of 173.83% as reported by Jen et al,
(1968). In this study the problem was solved by using

21,23, 23, 74 two derivative free methods. The comparisons of the
>0 solutions found in this study are presented in table-2.
By u
Table 2. Comparison of results

Power cost . Maximum Minimum power cost
Sr. No. $/(HP-HR) Production Rate Pressure Jen HJ NM
1 0.0015 175 802.82062 172.21 172.11700 172.11705
2 0.003 17.5 658.19221 172.85 172.74737 172.74745
3 0.006 17.5 473.69271 173.83 173.74617 173.74621
4 0.009 175 361.23119 174.52 174.45393 174.45394
5 0.012 175 283.80233 175.95 174.91330 174.91335
6 0.018 17.500001 200.00000 175.07 175.06747 175.06741
7 0.024 17.500001 200 175.07 175.06 175.0601

The previous studies witness that NM method is
comparatively a low computation cost method. On the
other hand HJ method provides guaranteed convergence
for a number of differentiable functions (Dimitri et al,
2000). But the present study shows a different picture of
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the methods. It was observed that the solutions which are
shown in table 2 at serial number 2 found by HJ and NM
methods were approximately 0.059% better than the
solution of Jen which was the maximum percentage in
the results. It was also observed that the solutions which
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were shown in table 2 at serial number 6, 7 found by HJ
and NM methods were approximately 0.006% better than
the solution of which was the minimum percentage in the
results. These comparisons had witnessed that

450 w
400 392
346 358
350
300 267
250
1 2 3

200
150

Function Evalutions

100
50
0

312 307

4

Power Cost

Determinists DSMs like HJ and NM methods were yet
better choices for solving such exponential type
optimization problems in engineering design but HJ
method is more reliable.

401 400

362

332 342

342

B NM Method
H H) Method

Fig-6. Comparison of function evaluation of NM and HJ methods

HJ method terminated when the step length fell
below 10° and NM terminated when the maximum of
200xNo of variables function evaluations were carried
out. At these termination criteria the function evaluations
by HJ method were smaller than those of NM method for
the power cost rates (3-7) but were comparatively higher
for (1-2). It was contradictory to the reported minimum
computational cost of NM method. It was concluded that
on the radical objective functions like the modeled one,
HJ method may be a better and low cast choice.

Table 3. Comparison of Function Evaluations between
NM Method and HJ Method.

Function Evaluations

Power cost

NM Method HJ Method
0.0015 346 392
0.003 358 407
0.006 399 267
0.009 312 307
0.012 362 332
0.018 401 342
0.024 400 342

The above table also showed that when the
power cost was small the number of function evaluations
of NM method was less than that of HJ method and when
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the power cost increased gradually the performance of HJ
method was getting better than NM method.

For optimum results of Oxygen design problem,
a general-purpose solver was required. For numerical
simulation of the oxygen design model, the programming
environment of MATLAB was found quite supportive
due to availability of a plenty of built-in functions.
Another important advantage of MATLAB was the fact
that parameters were easily settled for handling
constraints.

Conclusion: The outcome performances of Hooke-
Jeeves and Nelder-Mead methods experimented via a
number of initial guesses were carried out on formulated
Oxygen production system. It was concluded that
performance of HJ method was promising with respect to
its efficiency of solving such a problem with minimum
computational efforts as compared to those of NM
method. Through this work it was recommended that in
any environment HJ method was a better choice as
compared to the class of methods involving NM method.
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