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07,0, 2" )=1) isa G-subsetof O(Wm)\ O
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Let n=k’m .Then Q (\/;)={a Jn ta,c,
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where G=(x,y:x*=3»"=1) . In this paper we find proper M  -subsets of
0™ ()= Zﬁ 00" (Wn):c=0(mod 3)}or 0 (Vn) = Q*(\/g)\Q***(\/g)) 00" Wn)

according as 7 # 0(mod 9) or n=0(mod 9) and O (N9n) = (0" m)\Q™ (Wn) D O™ (W) for all
" which are invariant subsets of Q(\/E Y\O under the action of M = (x,y:x> = y° =1) . Specifically we show
that 0}, (9p) = 04(9p) for all prime P, where 0} (9p) denotes the number of M -orbits of Q" (y/9p) and
0,(9p) denotes the number of G -orbits of Q" (@) . Also we prove that 0,, (p) =0, (p) if p =1(mod 3)

where 0,, (p) denotes the number of M -orbits of Q - (\/; ).
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INTRODUCTION AND PRELIMINARIES . The group G={(x,y:x>=p>=1) where
An extension of degree 2 of the field of rational -1 a-1
numbers () is called the real quadratic field Q(\/E ), x(a) = a and  y(@) = “a are the linear
where mM>0 g square free integer. Since fractional transformations, is the Modular group. The
PLOGm) = 0(m) 0 {eo} =(O(/m)\ Q) 0(QT foo}) ~ group M =(xy:x®=y*=1) where
: - -1
5 x(a)= -1 and y(@) = ——— are the Mdbius

. _ a+n a’-n a -n 3(a+1)
Q (\/;) =1 c 4,6 c HZ.(a, c €)= 1}transformations, is the Mobius group. Since

is a G _subset of Q(\/E) \Q where n=k’m . Q'”(\/;) nQ" (\/%) = (Q*(\/;)\Q***(\/;)) O Q***(\/%)

" « ; for each non square n ,
Since Q (\/;) and Q (\/n_) are disjoint if and only
if n,n

O(Wm)\Q = UkD 0" (Wk*m) is not disjoint

are distinct integers, SO N~ i Nd he study of action of M
union. However this reduces the study of action o on

- s [12 e .

Q(\/;)\Q UkDNQ (VAk"m) s disjoint union. It Q(\/E )\Q to the study of action of M on

was proved in 1988 by Mushtaq and Aslam, that the action o \/—

of M on Q[]{} is transitive whereas the action of 0" (n).

M on Q(\/E )\ Q is intransitive was proved in 2004, For brevity we denote (0 (\/;)\Q*** (\/;))D 0" (@)

by  Malik efal ., by proving that by QO (v9n) forall nonsquare 7.
" _ a . * L A l « Then:
g (\/;) B {7 :atQ (*/;)’t =1.31=0 (*/;) D§ 0 (*/;) 0" Wn)0 Q" (W) if n=134,60r7(mod9)
0"Wm=1 0" (m) 00" om) if n=0(mod9)
isan M -subset of Q(\/E) \Q = UkDNQ (Vk*m) 0" (on) if n=2,50r8(mod9)
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Hence this further reduces the study of action of
M on Q"’(\/;) to the study of the action of M on

0™ (Vn) 0" (n)
n#0(mod 9) or n=0(mod9) and O (N9n)
a +\/;

c

or according as

00" (Vn)

for all non-square 72. An element

is called ambiguous number if and only if a®> <n and

Ql* (\/;) . O (\/;) , Q:N (\/;) , Ql (\/;) stands

for the set of ambiguous numbers of Q*(\/;) ,

0™ (n), 0" (n), 0" (n) respectively.

In 1978, G. Higman used the idea of coset
diagram (generalization of Cayley graphs) to study the
action of such finitely generated infinite groups on infinite

fields for the first time. In 1995 (Malik ef al .), the
cardinality of

0; (V) = {¢DQ*(Q):612 <n}

determined. In 1988, by Mushtag and Aslam, it was
proved that the ambiguous numbers in the coset diagram
under the action of Mdbius group form a single closed
path and it is the only closed path contained in each orbit,
M

O where @ JQO(Wm)\ Q. Both these results urge
one to think how many such paths exist under the action of
M on 0" (n).

It is quite appealing to relate the group action on
quadratic field to new and fascinating multi-front of
algebraic number theory. It is easy to see that the set

Q*(\/; ) is the set of all roots of the primitive second

degree equations ct’ +2at+b=0 with reduced
— 2 _ —

discriminant =4 —bc=n 1t Q s the root of the

2 —
equation €f” +2at+b=0 ey x(a) and y(Q)
the of the

was

are roots

3bs? +2at+§= 0

second degree equations

and

3Qa+b+c)t’ +2(a+o) +§ =0 respectively. It

is worth noticing that all these three equations admit the

same reduced discriminant, A | This shows that

Q'”(\/;) is an M -subset of Q(\/E) \Q and hence
n ¥ 0(mod 9) ,

for each
a+n 00" (n):c = 0(mod 3)}

C

0" (Wn)={

248

is an M -subset of Q'”(\/;). If @ and its algebraic

conjugate E’ have opposite signs then & is called
ambiguous number.

The action of G on Q*(\/;) was discussed
by (Malik ef al ., 2000, 2004), and it was proved that G

acts on Q*(\/E ) transitively whereas the action of G
on Q° (\/; ),n # 2 is intransitive. The exact number of

ambiguous numbers in Q*(\/; ) for all non-square 1
as a function of 7 was determined by (Malik ef al .,
2004). The M -subsets of Q"'(\/; ) were explored in
(Malik et al ., 2004, 2012) by using coset diagram.
Closed paths in the coset diagrams for a subgroup of M
acting on Q(\/E ) were studied by Aslam and Mushtaq,

2004. The orbits of Q*(\/; ) under the action of G
were discussed by (Kouser efal ., 2000, Malik and
Aneesa 2011, 2012) and it has been investigated that the
number 0 (p), the number of G -orbits of Q*(\/;) ,
is even. It is quite captivating to explore the transitive M
-subsets of Q"' (\/; ) and to determine the number

0, (n) of M _orbits of Q'”(\/;) in terms of 0 (1)

Throughout this paper G and M stands for

Modular and Mgébius group respectively, 7 for

atin

a for , (¢/®) for

non-square positive,

Legendre symbol, 0, (n) when n=0(mod9)
(respectively 0), (n) when 1 % O(mod 9) ) denotes
the number of M -orbits of Q" (\/;) ( respectively
o (\/;) ). 0,,(9n) denote the number of M -orbits

of Q" (v/9n) . In what follows throughout that p isan
odd prime, unless otherwise mentioned.

In Section 2 we study the action of M on Q"'(\/;)
and determine cardinalities of some M -subsets of
o" (\/;) . We prove that
0} (9p) = 0, Op)

and find 0,,(p) intermsof o, (p).

Section 3 M  -orbits of
0" (\/9p) when p=1(mod 4) . In particular we
have been able to prove that O (y/9p) splits into

is concerned with the
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atleast four M -orbits when p =1(mod 4) . In Section

4 , we further find some more M _orbits when

1
WP L |<£ “p

|amb | ( 7 )M |amb
-1+4p .
+| (_—j_w <107 (OP))
and prove that (a)” n (E)M = and
(O')M N (—O')M = for all
a 00" (om\ (V)" O (‘E)M D(”f)”’ (_1_+2f

To accomplish our work we enlist several already proved
lemmas that will be used in the subsequent work.

Lemma 1.1 (Malik etal ., 1995) Let m be a
square-free positive integer. Then:

L i ,
10/ (m) [= 7" (m) = 21(m) +43 " T(m = a®)

Lemma 1.2 (Malik ef al ., 2000) Let p = l(mod 4)

such that p = a’ +c’. Then there are exactly eight

numbers
a+\/_ —a+\/_ c+\/_ -c \/_
P Eoroi(/p)

which are mapped onto thelr conjugates under X.
Lemma 1.3 (Malik ef al ., 2000) Let p =1(mod 4) .

Then Q*(\/;) splits into at least two G -orbits,

1+
namely, (\/;)G and (T\/;)G under the action of
Gu
Lemma 14 (Malik and Aneesa, 2012) Let

p=1(mod 4) . Then: |(p)°1,,=8p]) and
+2\/;)G ‘amb:4(L\/;J+1) where p—1 is a

perfect square.
[P L= 4GP I +1) and
1447
2

| ( Y s = 4L\/;J where p —4 is a perfect
square.
Lemma 1.5 (Malik efal ., 2004) Let
+ 2
- */_DQ(f)andb— " Then:
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a Hkksk

—00™(n) = 3|b.
.3
2 %DQ***(@) < 3doesnot divideb .
Lemma 1.6 (Malik etal ., 2012) Let

X, ={a:a 00 (n)withcorb=1(mod 3)}
and

X, ={a:a00 (n)withcorb=2(mod3)} .
Then X, U x(X,) and X, [ x(X;) are M-subsets
of Q" (\on).

Lemma 1.7 Malik et al .,2012) ~

0" (W9n)
QM(@)D(Q*(\/E)\QM(\/Z)) ifn=0(nodv)

if n£0(mod9)
0" W)\ (Jn)=

Lemma 1.8 (Malik ef al ., 2012) Let n = 0(mod 9)
and a U Q*(\/;) . Then:

1. If 3 does not divide a then — belongs to
2. If 3|a then —  belongs to

Q*(\/g)\Q***(\/%) or Q***(\/%) according as
a0Q Wm\Q™ (Wn) or 07 (Wn).

Lemma 1.9 (Malik et al ., 1995) Let n be square free
positive integer. Then:

(\/;) |= 21" (n) + 4ZL\/;JT'” (n—a®) where

7" (u) denotes those divisors of #, which are divisible

10

|u

by 3.

Lemma 1.10 (Malik ef al ., 2004) Let @ 00" (\/n).
Then a™ = (c_r)M
B in a" such that x(ﬂ)ZB
2 M-subsets of Q"’(m)

We start this section with the following definition.
Definition 2.1 By a circuit, we shall mean closed path of

edges and hexagons in the coset diagram for M -orbit
a® wherea ] Q*(\/;) .

If n,n,,ny,ny,..,

if and only if there exists an element

n, isasequence of positive integers



Pakistan Journal of Science (Vol. 64 No. 3 September, 2012)

and

i;=0,1,234,i #i,, (1=12,..k=1),i, #i,
Then by of the type

(I/lll.1 Mo s T s M eees Mg ) we shall mean the circuit

a  circuit
(counter clockwise) in which n;,j=123,.,k

hexagons have j vertices outside the circuit.
Remarks 2.2 1.

ambiguous number of & the circuit begins, we can

Since it is immaterial with which

express type (D) by any of the following k -equivalent
forms

(nlll > n212 0 nklk ) = (nzlz > n3l3 RS nklk > nlll )

= "'(nkik L T )
2. The type (nh.1 Mo o T s My, ""’n’”'k) can be
described by the equations (1) or more briefly by
[;=0,1,23,4,i, £ (2)

3. This circuit

i+l i+l i+
g= oy )% Y2 (") of H  and

fixes a particular vertex of a hexagon lying on the circuit
and hence the ambiguous length of this circuit is given by

2(n,+n, tn, +...+tn,)
4. All of the 2(n, + n, +...+n, ) numbers lies in the

same orbit and hence each of them has the same type.
For example, by the circuit of the type

induces an element

(2,.1,,3,,15,2,,6,) we mean the circuit induces an
g = ()" (") o)) () ()
of M which fixes some vertex k and the ambiguous

length of this circuit willbe 2(2+1+3+1+2+6).
Next in this section we are concerned with the

ambiguous cardinalities of M -subsets of Q'”(\/; ).In
the following lemma we find the condition for the sets

(Q*(\/;) \Q™" (\/;) and Q*(\/;) to be equivalent
to O (W9n).

Lemma 2.3

element

0" (Vn) if n=2(mod 3)

s JonY is eauival
0" (\fon) is equivalent 1o {Q*(\/;)\QM(\/;) i n% 2Amod 3)

Proof: The proof follows by the mapping

O'(Wn)  ifn=2(mod 3)

0 (W) -
SR {Q*(JZ)\Q*“(JE) if n ¥ 2(mod 3)

(1)
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-1
defined by x(@) 23—. Clearly the mapping is a
a

bijection. O
The following corollary is an immediate consequence of

Lemma 2'3.
Corollary 2.4

= (fom =] 196 if n=2(mod3)
OO {|Q§‘(JZ)\QJ‘*"(JZ)| if n #2(mod3)

The following lemmas give us cardinality of Ql*: (W/9n)
.0

Lemmas 2.5

1.

"~ (\on _{ 2JQ1*(\/;)\ . if n=2(mod 3)
O g W =10 WM )i 0 # 20mod 3)

ook

2. 107 (W) =200 (Wn))) it n=0(mod 9).

Proof: The proof directly follows from the definition of

Q*N(@) and Lemma 2.3.0

The following lemmas give us the cardinality of

0" (n).

Lemmas 2.6

10 W) [=2|0/(Wn)|  if n=2(mod3)
10" W) =1 200 W) =107 (o) | if n=1,3,4,60r T(mod9)

|07 WIn) |+ 0 () =210 ()| if n=0(mod9)

Proof: The proof directly follows from the definition of
Q"'(\/;) ,Lemmas 2.3 and 2.5.0

3 M -Orbitsof 0"'(y/p) and Q" (/9p)
p =lor2(mod3) for eacch p=5
similarly p =1or3(mod 4) for each p > 2. Thus

Since and

p =£1,7,13 or 19(mod 24) according as
p =E1,7,5 or 3(mod 8) and
p =5,11,17 or 23(mod 24) according as

p =53,10r 7(mod 8) . In Theorem 4.4 (see Malik
etal  5000) it has been proved that if p = 1(mod 4),
then Q*(\/; ) splits into atleast two G -orbits, namely

1+
(\/; Y and (T\/;)G . Two M -subsets namely
AU x(A)and BU x(B)

where
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A={a:a00 (n)with(b/3)or (c/3) =1}
and

B={a:a00 (n)with(b/3)or (c/3)=~-1}
were found by Malik et al ., 2012. In this section we also
determine M -orbits of O (\/% ) and investigate
ambiguous lengths of these orbits in terms of p where

p =1(mod 4) . In the following theorem we discuss the
number 0,,(p) of M -orbits of Q" (\/; ) in terms

of number 0;(p) of G -orbits of Q*(\/;) for all
p .

Theorem 3.1 If p >3 such that p #31.
0y (9p) = 05(9p)

Proof: If X is any G -orbit

Then:

of Q*(\/%), then

clearly
XnQO7(9p)=1{a0X :c=0(mod3)} is not
empty and hence

(X nO"WIp)n (¥ n Q" ({9p) =0
whenever X and Y are distinct G -orbits. Then,

clearly number of sets of the type X N Q*** (\9p) is
0;(9p) . By Lemma 2.3 and Corollary 2.4 we find that

the number of M -orbits of O (y/9p), is equal to

0. (9p) . This completes the proof.c
In the following remark we give the number of

M -orbits of Q" (\/; ) and determine the relationship
between the number of G -orbits of Q*(\/;) and

number of G -orbits of Q" (1/9p).

Remark 3.2 It can be easily seen that:

1. 0,/ (p)=o0,(p) when p=1(mod 3).

2.

9 p) = 205;(p) if p #11(mod 24)
%6OP) =140 () if p=110mod 24)

In the following theorem we give the exact number of

M -orbits of O (y/9p) and Q'”(\/;).
Theorem 3.3
1. Let p =1(mod 3) suchthat p # 31. Then:

(@) 0, (9p) =204(p)
(b) 0, (p)=304;(p)
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if p =5,17 or 23(mod 24)

0, (p)= 204(p)
P if p=11(mod 24)

404(p)

Proof: The proof directly follows by using Theorem 3.1
and Remark 3.2.0

Example 3.4 If p =31, then O (@) splits into
exactly six M -orbits and Q" (\/ﬁ ) splits into two
M _orbits whereas Q*(\/i) splits into two G -orbits.
Also (\/ﬁ)G \ Q™ (\/i)
(—\/ﬁ)G \ Q™" (\/ﬁ)) splits into three M -orbits

namely (V3D , (@) and (”J_
1+J_

(respectively

respectively (- -31 3™ and

(_1 J—) ). Thus 0,,(31)=8.¢

Example 35 Since 0;(3)=2
***(\/_ )—{£ £} which map on each other

under the action of M and forms a single closed path.
Also Q7 (¥/27) splits into exactly two distinct M

B

-orbits  namely (\/g)M and (_I)M

0,,(3)=3 ¢
The following lemma will be used in the subsequent work
and provides us a base to proceed further.

Lemma 3.6 Let K[JN and for all O'DQ*(\/;)
Then:

) (@) =a+k=0"x"(a)
2. () (a V=12 3k = (0’) (@)

Proof: These results are straightforward and can be
verified by Table 1.

Table 1The action of x,y on a (1Q" (\/;)

Thus

a a b
xy(a)=a+1 atc Q2q+b+c
) (@)=a+k atke 2ka+b+k*€

c
c
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svn - 9 a+3bb 6a+9b+c -1+
(xy*)(@) a+1 L\/;J = 2(mod 3) otherwise in (—\/;

_ a a+3klb 6ka +9bk* +
() (a)= - +1+

Similarly the numbers T are contained in
“LVP
In the following theorem we find the ambiguous lengths of M -ori)/'.tsfound in Theorem 1 in terms of 7 .

Theorem 3.7 Let p = 5(mod 12) such that (_ 1+4p Y it L\/;J = 2(mod 3) otherwise in
-2

p—IZL\/;J2.Then: | \/_
TP u 5
|(J— =8P~ |<J_ w2

The following theorem is concerned with the type

"

2 of circuit found in Theorem 3.1.

|(1+\/;)M | =d4(l++/p-1)= — +\/;) | .p>5 Theorem3.10 Let p =1(mod 12) such that

2 am _ 2 amb )
_ p—IZL\/;J . Then:
Proof: The proof is analogous to the proof of Theorem \/;
3.1 using the fact given in Remark 3.2.0 1. The circuits of (\/; Y and () have the type
Example 3.8 -1
1. ByTh 3.4, 2

y Theorem ((\/F)O,(_\/p—l)“(\/p—l)o) and hence

5o 5 3

| (—) Ly =8 =] (—)" |,,, and the circuits have

-1 have ambiguous length ? Wp-1).

the type (2,,14,2,,1,,2,) . But Theorem 3.4 doesn’t

1+ -1+
\/— -1+ \/_ 2. The circuits of (—\/;)M and (—\/;)M

hold for | (—) |amb _| ( ) |amh = 2 2 - 2
dei h N (1.1 ) have the type
and circuit have the type (1,,1,). -1 — —
v vr -l Vr ol
2. By Theorem 3.4, (L J)O,lz,(L 3 J—1)4,12,(L 5 J—l)o)
101 101
| (T)M |ams = 80 =] (_—I)M |amy and the and hence have ambiguous length g p-—1.
circuits have the type (10,,5,,1,,15,6,,15,6,,10,). Proof: In order to prove second part it is sufficient to find
Also the element g LI M such that
1+4/101 1+\/10 1+ 1+
|(T)M s = 44 = (———)" |,,,, and (g ;/;) = \/;-Using Lemma 3.6 we
the circuit have the type Jp-1
RUERE Jp-1-1)+
4,,1,,2,,15,15,30,1,,15,2,,1,,5)) . . (xy) 2 1(1 ;/;):( P 121) \/;
Remark 3.9 If p =5(mod 12) then the numbers obtain

Using Lemma 2.1 (Malik ef al ., 2004) we have
+ + + +
I_\/EIJ \/; and L\/;JI \/; are contained in L@J—l (1 + \/;) _ Wp-1-3)+ \/;

(")) 2

3Jyp-1-4
P .
)" and (_—I)M respectively. Also the numbers Using Lemma 3.6 we obtain

r= L 1ep o G=JYp-D+p
1 — 5 ) 3 2 =
+L\+/ T contained in (—Y2)¥ if tor) () PR 3p-1-4

. Using Lemma 2-1 (Malik et al ., 2004) we have

252
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= =N -
W) 2w 2 ”2( (1=Jp )
Using Lemma 3.6 we obtain
e T ey T f f)

+
. Hence The circuit of ( 2\/;

@ﬂghmltﬂgﬁ

)" have the type

Jp—1
2

2,( _1)4,12,(L

8
and hence have ambiguous length gw/ p — 1. First part

can be proved similarly.o
Example 3.11 1. Let p =37 . Then by Theorem

3.10, the element of M that fixes & = /37 and its
conjugate is (xy)° (xp”)* (x)°,

the circuit of

(%)M and its conjugate have the type (6,,4,,6,)
p p
and | (£)M |y = 32 =] (_£1)M |t -
1+

2. Theelementof M thatfixes [ = and its
conjugate is
(XJ’)3 (xy3 )(xy5 )(xy3 )()Cy)2 , the circuit of

1+
(T\/;)M and its conjugate have the type
(20a12514512a30) and

1+ p -1+ p
‘ (T\/_)M ‘amb: 16 :’ (—\/_)M ‘amb ‘

-2
Theorem 3.12 Let p = 5(mod 12) such that

p—4=L\/;J2.Then:
\/_ lunp = 2(64/p =4 +2) !(\/_ Y amp

|(—
_1+\/;M _1+\/;M
|(_—2) - )

2.
lamp = A P~ 4 = (

Proof: The proof is Straightforward.o

4 M -Orbitsof O (yJ9p), p =1(mod 4) with

0y (p)>4
Let p =1(mod 4) . If

|amh

1-1y)

253

|®W@Wﬂ@@K@WWﬂ

Then we have 0;; (p)=4.1f
(/DM ﬁ”)”” [ HE ﬁ’)ﬂ” = &’)M 079

Then we have the following results.
Lemma 4.1 Let n = 1(mod 4) . Then:

1 @ n (@) =

a0 (m)\((/n)" DN?WD(

all

JZ

-2

for

1+ \/ﬁ

=[ forall

I

.2. (" n(-a)"

\/_ 1+n

N -
U
( -2

a00" (Im)\((/n)" D=

Proof: By Malik et al .,

atAdn —a+\/;

+¢ tc

)M 0¢ ")

1995, we know that

are contained in

()™ or (_£’I)M where ¢ % 0(mod 3) and

c+tn —c+

are contained in
ta

1+\/; M
(T)

ta

e LIY

where a F 0(mod 3).

Hence using Lemma 1.10 we have
for all

(@) n (@)
Vi o 1+,

aDQ*“(J%\«JZ)MD(_fl)MD( o)

o 1_+2f

The 2nd part directly follows by Theorem 1.6 (Malik

etal ., 2012).0
In the following lemma we use

gf%%b=gwﬁméghﬁ>

Lemma 4.2 Let n =1(mod 4) . Then:

L+ */_ (n)or 0 (\on)\0"" (Vn)

accordlng as n =lorl17(mod 24) or

n =5or13(mod 24)
Proof: The proof is straightforward.
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Lemma 4.3 Let p =5(mod 12) suchthat p—1 isa

+ +a+
perfect square. If (\/;)ame(\/;9 amb a+1\/7 —4 \/7 O a<|_\/7 J}
Q" I\ 0" () \ () D(J—) MY£O  and

, then either (1 +2‘/;7)ﬁ1bD(_1+2‘/;) +a++2\/;7’+a+\/;77:1f\-ﬁ€7 ra=13,.L/pl-1}
1 2 . " Ny - p-a P
j;orﬂ;mm@)\g”"(ﬁ»\«ﬁ) DOE) ) 2

. \/_ o
Proof: Using Remark 3. 9 Also (\/_) L ( ) b Q (\/%) \Q (\/_)
(\/;)MD(E)M_{ aryp +a+\/> 0<a<|_\/>J} and ( \/_) D( \/_ Q””(\/_)

1 Tt (p-d’

Af For p > 17 we have atleast four more M -orbits

P I
© (o Q" o\ (WP D=0 (#)M contained in 0" ({[p) since

, then either p —1 is not power of two or is power of 2 L \/— J 4
. . therwi = dh
using Remark 3.6 [?]. In first case p —1 is not power otierwise and fience

of two then there exists +1+ \/_ \/— \/—
\/_ . za Ny g TP
0" (@) Vo™ (\/_)) \ ((\/_) 0 ( ) }?ence For p > 17

.pr 1 ispowerof 2 then p —4 isnot power of _1+\/_ \/;M —1+\/;M .
m( ) O ( )™ . This
2 Thus there exists +4 2 -2

2 N o v shows " contains atleast six M -orbits.
+t—‘/;D(QN(@)\Q""(\/;))\((\/;) D(_@) ) shows €7 (/p) conins s o

. By Corollary 4.4 we have six M —orbits either
W Wp)" D(I) |:|( \/7)MD( \/7) |:|( \/7) O(- \/;
Corollary 4.4 Let p =5(mod 12) suchthat p —1 is %
a perfect square. If

O™ (I 0" PO\ ()" O (_£’;)M) 00 (JE?)MEK%Y”EEZ‘E)WEKQZ&)WEKZJ:?WE‘(_?/})M

» then contained in Q*N H9I9p)\ 0" (\/; ). Thus we have
(/o) DALy 0¢ +‘E’)M D(_”\E’)M ¢ “ﬁ’) - \E’) ¥ O ([9pleast twelve M -orbits.
T g % ~a

Lemma 4.6 Let p =5 o0r 13(mod 24) such that

or

or
—1 is a perfect square. Then Q (1/9p) splits into
\/;74/1 2\/;7 _2+\/;7M 2+\/;M \/;7
Wp)" il 1 7B )0 el DQ&rQst eight M -orbits for p > 13
Proof: The proof is straightforward and follows by Proof: Using Lemma
Lemma 4.3 .0 1+
4.2, */_ 00 (W9n)\ 0" (n). Also

Lemma 4.5 Let p =17(mod 24) suchthat p —1 is

a perfect square. Then Q' (1/9p) splits into atleast
e M ¥°r) = W) D(*ﬂ 00" (9p)\ 0" (p). For

twelve M -orbits for p >17

Proof: Using Remark 3.9, \/_ ol \/—) \/_

p>l3

otherwise
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for p=l3,¥ﬂ(\/ﬁ)ﬂ4 D(_£13)M hence
+1+\/_
0" (M)\Q’”(f ). Thus
Wp)" D(J—> D(”f
f f

exists and contained in

1+\/;)M
4

0o~ (J%)\Q""(ﬁ)
1 -1
+f ) O ff ) 00" ().

Hence we have eight M -orbits. O
Example 4.7 Let p = 37 . By Theorem

3.1, Q*Nz (y/9p) splits in atleast four M -orbits,

namely,
1 -1
(JE)M,@)M,( ;ﬁ )" and <_+—2J;)M.

P

By Theorem 3.6, |(—1) | amp

and (

=32 and

1+ .
|<—f " lans =16, 10/ (J37) =124 and using

Theorem 1.10, | O, (\/ﬁ ) |= 52 . Using Theorem
24,107 (\9.37) |= 2(124 - 52) = 144 . Since

1+
WP s I(‘/;)) Mot E— ‘/;)) s # € - ‘f) lan=96<144

.Therefore by Lemmas 4.2 and 4.3 atleast four more

_1+\/_

+4

M _orbits exists which are ( Also

|(_1+J_

of all elght orbits is 144 . Therefore we conclude that
0" (7/9.37) splits into exactly eight M -orbits.

Lemma 4.8 Let p =1(mod 24) such that p—1 isa

perfect square.Then O™~ (y/9p) splits into atleast eight

M _orbits.
Proof:

|amh = 12 . Here the sum of cardinalities

Using Remark 3.5 ,

255

\/_ _ tat+yp +a+\/_
() D, = T )o<a<Lﬂ
where p—a’ #0(mod 3)} and

1+\/;7M " —]+\/;) '+a+ P ia+\/;)
o pd
2

Also ([ p) D(*/_) 00" (op)\ 0" (Vp)
1 -1

and (+T\/;)M 0 (_—2\/;)M H Q'”'(\/;)-

”4@ pl2ye g c

M
2 -2 )
p =E1(mod 24) such that p —1 is a perfect square.

1+4p
4

M -orbits and conclude that O (y/9p) splits into

atleast eight M _orbits.o
Example 4.9 Let p =577 .

for

U Q"”(\/; ). Thus we have four more

Since

Then Q" (79.577)

splits into at least twenty M -orbits, namely, (?)
STT m 1+577 =1+577
(—) s ), )
2 -2

(l+«/57 (CLESTT 1+«/57 (1+«/57
(—1+\/57 (1+\/57 CLHNSTT 1+«/57
(l+«/57 CLHNSTT 1+\/57 (1+«/57

16 ’ 16 R [
—1+\/57 3+4/577 ., —3+~/577 .,
Gy 2Ny (Z3ENRTT,

-16 8 8
<—_”8 ) and (<)

Lemma4.10 Let p = 5(mod 12) suchthat p —1 isa
perfect square. Then p =17 or 5(mod 24) according

as L\/;J =0or2(mod 4).

Proof: The proof is straightforward.o

:a=1,3, | pl-lwhenp-d £0@moad)
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Remark 4.11 For p = 5(mod 24) suchthat p —1 is
a perfect square.

\/_DQ(\/_) c=1,L/p1"

1. Let ¥ = {

2. Let
7= NP \/_DQ Wp):e L@J :

Then Y Ox(Y)OG/p)" O (@)M and

ZDx(Z)D( \/_) 0(— Y2 \/_)M.D

Theorem 4.12 Let p—5(m0d 24) such that

p—lZL\/_JZ =(2q,)*. Then:
|(1+f’>«”| -C

amb I\

4

Proof: The proof is analogous to Theorem 3.4 .0
Remark 4.13 Let p =5(mod 24)

1=l 12 = 2
p-l ] pJ (24,) . Then:
I+yp o _ 1P oy
( )" = )
4
Remarks 4.14 It can be easily seen by Malik and Aneesa,

2011, Theorem 3.2 and Remark 3.3 that:
257 761

such that

and are the only primes
p=17(mod 24) and p <2011 such that
0y () =12.

401 and 1601 are the only primes
p=17(mod 24) and p <2011 such that
0, (p)>12
For p=401, Q" (\/; ) splits into twenty M

-orbits, namely, (@)M , (@ M M)M ,
_1 \/_ 1+\/; M 1+\/; M
(—) (_—4)
—1+\/_ —1+\/_ (1+\/;)M
5

_1+\/; M 1 \/_ _1+\/; M
(T) (_—5)

>

\/;7 i€ \/B)ML;mb § \/;) i 2\/71"'1‘

256

1+4p 1+p —1+p
By e (SN,
—1+4p M 1+\/; M _1+\/; M
e M G
l+\p . _1+\/; M
T IA

For p=1601, Q"' (\/;) splits into twenty eight M

1
@)M , (_£’1’)M (e

2

-orbits, namely, (

_1+\/_M 1+\/;M 1+\/;M
: (T) : (_—4) :
_1+\/_ _1+\/;M 1+\/;M
S EREy Sy
-1 1 —1
<+—ﬁ>’” C = ”_ ,
I+\p \ I+yp _1+\/_
e ,
—1+4p 1+4p y _1+\/_
e L L
1+y\p u —1+\p u 1+\/;M
e I e e M
(_1+ p)M 1+\/;)M _1+\/_
25 - -25 ’ -25 ’
3 -3+ 3
( +8 p)M , \/_ (__}{;)M

-3+ \/; M
(——8)
* The primes p = 5(mod 24) and p <2011 such

that 0, (p)=8 are
101,197,269,389,557,677,701,1301,1613,1949
and 1973.

« For p=1901, Q'”(\/;) splits into twenty four
1+
M -orbits, namely, (\/IE)M, (\/;1)M,( \/;

)
2
-1 1 1
<_+—2ﬁ>’” (+Tﬁ>’” <+_—f)M
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_1+\/_
lf

1+Jp

,(5),

_1+\/_ M

_1+\/; M
C——ji———)
-1
Sy

NN ‘“ﬁ ,
10 —-10
_1+\/_ 1+\/; M _1+\/_ M
~10 ’ (T) ’ ’
1+\/_ 1+\/_ 1"'\/_
_19 ’ -19 ’ ,
ey
25
(M)M and (ﬂ)M . It is also noted that
-25 -25

p =5(mod 24) and
p <2011 suchthat 0, (p)>12.

* The following are the primes p =13(mod 24) and
p <2011 suchthat o, (p)=8:
37,349,373,709,757,829,877,997,1213 and
1861.

1901 is the only prime
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