

ELEMENTAL ANALYSIS OF FRESH WATER ALGAE, MICROSPORA

A. K. Khanzada¹, S. K. Khanzada¹, M.S. Bilal¹, S. Memon¹, F. Umrani¹, A. Panhwar^{2*}, A. Kandhro³ and G. A. Mugheri⁴

¹Institute of Plant Sciences, University of Sindh, Jamshoro, Sindh, Pakistan

²Centre of Environmental Studies, PCSIR Laboratories Complex, Karachi, Sindh, Pakistan

³M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Sindh, Pakistan

⁴Department of Chemistry, Cadet College Larkano, Sindh, Pakistan.

*Corresponding author; Email:aijazap@yahoo.com

ABSTRACT: In this study, the elemental composition of very important freshwater green algae genus Microspora was investigated. *Microspora stagnorum* and *Microspora amoena* are the main subjects of the investigation. Utilizing an atomic absorption spectrophotometer (AAS), these algae plants were gathered from multiple sites in Hyderabad, Sindh, Pakistan. *Microspora stagnorum* had the highest amounts of sodium 31.853 ± 2.139 a, iron 9.890 ± 0.664 b, calcium 0.233 ± 0.0 015d, zinc 0.315 ± 0.023 d, potassium 1.834 ± 0.123 c, potassium 2.636 ± 0.077 c, zinc 0.202 ± 0.024 c, and iron 15.483 ± 1.881 b, that the *Microspora amoena* (Kutzing) Rabenhorst sample has a comparatively high levels of sodium [Na] (45.511 ± 5.652 percent), iron [Fe] (16.483 ± 1.881 percent), potassium [K] (3.757 ± 0.335 percent), and iron [Fe] (26.483 ± 1.881 percent). However, at 0.536 ± 0.077 percent, the zinc [Zn] content was the lowest. Because of their high mineral content, the study showed that microspore species could be used as dietary supplements. Furthermore, these algae can be used as bioindicators for environmental monitoring and bioremediation processes.

Keywords: Fresh Water Algae, Elemental analysis, Atomic Absorption Spectrophotometry (AAS),

(Received 26.07.2025

Accepted 13.09.2025)

INTRODUCTION

The prospect of harnessing algae as a rich source of vital nutrients has garnered significant attention in recent years, with researchers like (Richmond 2004), Pulz and Gross 2004), and Becker 2007) highlighting their rapid growth rates and adaptability to diverse aquatic environments. This investigation zeroes in on the elemental composition of Microspora, a genus of green algae thriving in freshwater ecosystems. The omnipresent water cover on our planet, accounting for approximately 70% of its surface, supports an astonishing array of aquatic plant species. Freshwater algae, forming the backbone of the food chain and driving primary production, show a essential role in maintaining the delicate balance of aquatic ecosystems (Wetzel, 2001; Reynolds, 2006; Bellinger and Siguee, 2010). Their remarkable ability to bioaccumulate both essential and non-essential elements renders them valuable bioindicators for environmental monitoring (Rai et al., 2013). To fully grasp the nutritional value of algae and their potential applications in agriculture, human and animal diets, and other fields, it is crucial to analyze their elemental composition (Genter et al., 2014). Within the Microsporaceae family, the genus Microspora is widely distributed across freshwater environments, with its filamentous green algae boasting a straightforward structure and an impressive capacity to colonize various

aquatic habitats. Previous studies have revealed the presence of vital minerals such as calcium (Ca), iron (Fe), potassium (K), sodium (Na), and zinc (Zn) in several algae species (Wu et al., 2015). By quantifying the levels of these elements in Microspora species, we can better evaluate their potential as nutritional supplement sources and their role in bioremediation. This study focuses on the elemental makeup of four Microspora species – *Microspora amoena*, *Microspora stagnorum*, *Microspora willeiana*, and *Microspora tumidula* – collected from various aquatic locations in Sindh, Pakistan. Using Atomic Absorption Spectrophotometry (AAS), we measured the concentrations of Zn, Fe, K, Na, and Ca in these species. The findings of this research will significantly contribute to our understanding of the nutritional profile of these algae and their potential applications in various industries.

MATERIAL AND METHOD

All The research work study was competed in the phycology research laboratories of institute of plant science university of Sindh and National Soil Research Institute, Tandojam. The elemental characteristics of the following algae belonging to different genera were determined. *Microspora amoena* (Kutzing) Rabenhorst and *Microspora stagnorum* (Kutzing) Lagerheim.

Collection points: The algal plants materials were collected in February 2024 from various sites of Sindh Almanzar, River Indus (Jamshoro) Different fresh water pools of Hyderabad City Microspore are rich in nutrients and elements, such as potassium, oxygen, copper, zinc, hydrogen, sodium, magnesium and iron. These Microspore species collected from different places of Hyderabad

Digestion of the algal Material: The algae was first dried at room temperature in the shade, and then it was baked for one hour at 60 to 80 degrees Celsius. Ten milliliters of HNO₃ were used to carefully dissolve one gram of manually crushed sample material, and the mixture was then allowed to digest for eight hours. After that, the sample's acid solution was gradually heated on a hot plate between 100 and 120 °C until it was almost dry. As the sample cooled, it was once more digested using 8 milliliters of HNO₃ and H₂O₂ (2:1). It was then dried by placing it on a hot plate set between 100 and 120 degrees Celsius until only 1 milliliter of sample was left. After cooling, 24 ml of double-distilled water was added to the sample, diluting it to a total volume of 25 ml. Bright yellow should be the color of the diluted sample; if not, the solution was filtered through Whatman filter paper #42.

Elemental Assay: The Nuclear Institute of Agriculture (NIA), Tando Jam, used an Atomic Absorption Spectrophotometer (AAS) to analyze the samples of algal material belonging to the Microspora genus species. Each element was examined one at a time using a precise and appropriate standard solution. As stated by Marry and Franson (1992), the Analytic Jena-Germany, Model AAS-vario-6, used the direct air acetylene flame method for sample/solution purposes on an atomic absorption spectrometer. In the course of this investigation, every element in the freshwater alga Microsporum sp.

Methodology For Detection of Elements From Fresh Water Green Algae: Material collection, washing of the tape water, followed by distilled water, weighing of the dried material, digestion with

10 ml of nitric acid for 8 hours, ashing at 100 to 120°C, addition of HNO₃ and H₂O₂ (2:1), rehashing up to 1 ml of the dried sample, adding 24 ml of D.D water to make 25 ml, and preparation of the sample for the elemental analysis using AAS.

RESULTS AND DISCUSSION

The elements of five elements—zinc (Zn), iron (Fe), potassium (K), sodium (Na), and calcium (Ca)—were found to be significantly higher in Microspora species of freshwater green algae, such as *Microspora amoena* (Kutzing) Rabenhorst and *Microspora stagnorum* (Kutzing) Lagerheim. If these algae were processed and used in human food, the iron content would be lower. Table provides information on the above elements of several species of the genus Microspora.

Microspora Amoena (Kutzing) Rabenhorst: A number of elements have been identified in samples of *Microspora amoena* (Kutzing) Rabenhorst, a species of Microspora, including Zn, Fe, K, Na, and Ca. *Microspora amoena* (Kutzing) Rabenhorst samples had substantially varied Zn, Fe, K, Na, and Ca concentrations ($P < 0.05$), according to statistical analysis ($DF = 19$, $F = 240.11$, $P < 0.01$, $CV = 18.25$ percent). It is clear from (Table 1) that the *Microspora amoena* (Kutzing) Rabenhorst sample has a comparatively high levels of sodium [Na] (45.511 ± 5.652 percent), iron [Fe] (16.483 ± 1.881 percent), potassium [K] (3.757 ± 0.335 percent), and iron [Fe] (26.483 ± 1.881 percent). However, at 0.536 ± 0.077 percent, the zinc [Zn] content was the lowest. The findings also revealed that the microspore species *Microspora amoena* (Kutzing) Rabenhorst had the greatest sodium (Na) concentration among the elements examined in the samples, followed by iron, potassium, and calcium, and the lowest zinc (Zn) level. The elements in *Microspora amoena* (Kutzing) Rabenhorst are arranged as follows: Na > Fe > K > Ca > Zn. *Microspora amoena* (Kutzing), the Rabenhorst species, provides plenty of food for the ordinary individual.

Table. 1. Concentration of certain elements in *Microspora amoena* (Kutzing) Rabenhorst

S. No	Elements	Symbol	Samples (1 g each sample)				Mean
			S1	S2	S3	S4	
1.	Zinc	Zn	0.200	0.232	0.172	0.204	0.536 ± 0.024^c
2.	Iron	Fe	15.330	17.783	13.184	15.637	16.483 ± 1.881^b
3.	Potassium	K	2.73	3.17	2.35	2.77	3.737 ± 0.335^c
4.	Sodium	Na	46.050	53.418	39.603	46.971	45.511 ± 5.652^a
5	Calcium	Ca	0.630	0.731	0.542	0.643	1.636 ± 0.077^c

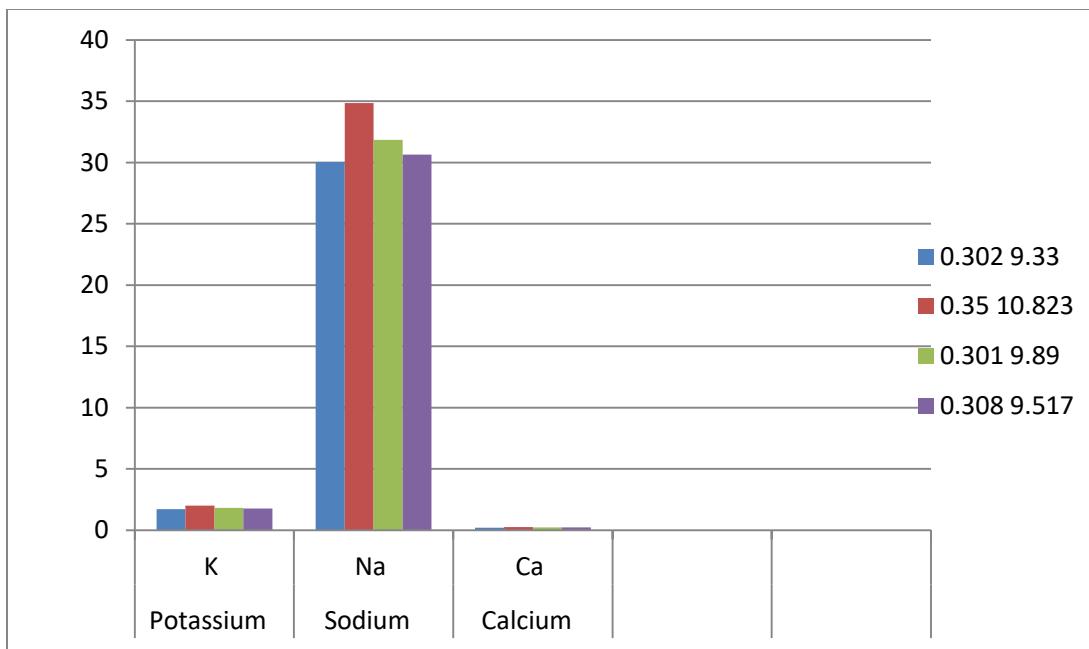


Figure.1 Concentration of certain elements in *Microspora amoena* (Kutzing) Rabenhorst

Table 2. Concentration of certain elements in *Microspora Stagnorum* (Kutzing) Lagerheim

S. No.	Elements	Symbol	Samples (1 g each sample)				Mean
			S1	S2	S3	S4	
1.	Zinc	Zn	0.302	0.350	0.301	0.308	0.315±0.023 ^d
2.	Iron	Fe	9.330	10.823	9.890	9.517	9.890±0.664 ^b
3.	Potassium	K	1.73	2.01	1.83	1.77	1.834±0.123 ^c
4.	Sodium	Na	30.050	34.858	31.853	30.651	31.853±2.139 ^a
5.	Calcium	Ca	0.220	0.255	0.233	0.224	0.233±0.015 ^d

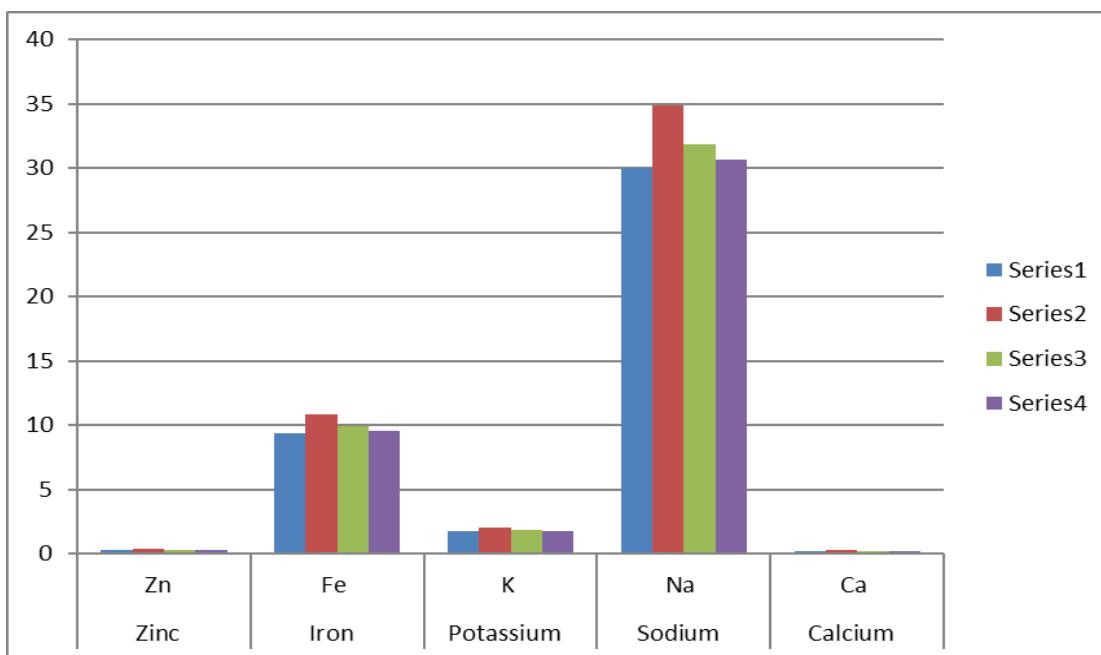


Figure.2 Concentration of certain elements in *Microspora stagnorum* (Kutzing) Lagerheim.

***Microspora Stagnorum* (Kutzing) Lagerheim:** Zn, Fe, K, Na, and Ca concentrations were measured using the genus *Microspora* *stagnorum* (Kutzing) Lagerheim. *Microspora* *stagnorum* (Kutzing) Lagerheim samples showed a highly significant difference in Zn, Fe, K, Na, and Ca contents ($P < 0.05$) according to ANOVA statistical analysis (DF = 19, $F = 887.33$, $P < 0.01$, CV = 10.25 percent). *Microspora* *stagnorum* (Kutzing) Lagerheim samples showed the greatest concentrations of sodium [Na] (31.853 ± 2.139 percent), followed by zinc [Zn] (0.315 ± 0.023 percent), potassium [K] (1.834 ± 0.123 percent), and iron [Fe] (9.890 ± 0.664 percent) (Table 2). Conversely, the lowest concentration was that of calcium [Ca] (0.233 ± 0.015 percent). The species *Microspora* *stagnorum* (Kutzing) Lagerheim was also discovered to have the greatest concentration of sodium among the elements analysed, followed by potassium, zinc, and iron, while calcium had the lowest concentration. Based on the concentration levels in *Microspora* *stagnorum* (Kutzing) Lagerheim, the elements were categorised as follows: Na > Fe > K > Zn > Ca. More research is required to confirm the species' balanced use for human nutrition in cases of Ca/Zn insufficiency and iron adequacy, even though samples of the green algae species *Microspora* *stagnorum* (Kutzing) Lagerheim had the lowest calcium and zinc concentrations. Each element's concentration in *Microspora* *stagnorum* (Kutzing) Lagerheim is showed in (Table 2).

DISCUSSION

Elemental analysis was conducted on four species of freshwater green algae: *Microspora amoena* (Kutzing) Rabenhorst, *Microspora stagnorum* (Kutzing) Lagerheim, *Microspora willeana* Lagerheim, and *Microspora tumidula* Hazen. The investigation focused on five key elements: calcium (Ca), sodium (Na), potassium (K), iron (Fe), and zinc (Zn).

The results revealed that *Microspora stagnorum* (Kutzing) Lagerheim had the lowest zinc (Zn) content, with a concentration of 0.315 ± 0.023 , followed closely by *Microspora willeana* Lagerheim (0.304 ± 0.037), *Microspora tumidula* Hazen (0.268 ± 0.033), and *Microspora amoena* (Kutzing) Rabenhorst (0.202 ± 0.024).

In contrast, *Microspora amoena* (Kutzing) Rabenhorst exhibited a significantly higher iron content compared to the other three species, with a concentration of 10.433 ± 1.268 , whereas *Microspora stagnorum* (Kutzing) Lagerheim, *Microspora tumidula* Hazen, and *Microspora willeana* Lagerheim had lower iron contents, ranging from 9.141 ± 1.111 to 9.890 ± 0.664 .

The potassium (K) content was relatively consistent across the four species, with *Microspora*

amoena (Kutzing) Rabenhorst displaying the highest concentration (2.807 ± 0.335), followed by *Microspora willeana* Lagerheim (2.757 ± 0.335), *Microspora stagnorum* (Kutzing) Lagerheim (1.834 ± 0.123), and *Microspora tumidula* Hazen (1.717 ± 0.208).

Notably, *Microspora amoena* (Kutzing) Rabenhorst had the highest sodium (Na) concentration (46.511 ± 5.652), significantly exceeding the levels found in the other three species. The calcium (Ca) content was relatively low across all species, with *Microspora stagnorum* (Kutzing) Lagerheim exhibiting the highest concentration (0.233 ± 0.015).

The findings of this study are consistent with previous research on the elemental composition of freshwater green algae. For instance, studies by Iqbal et al., Baruah et al., Rou and Borah, Kumar and Sahu, Choudhary, and Deb et al. have reported similar sodium (Na) concentrations in algae samples.

Conclusions: Every species had comparatively low zinc concentrations, but *Microspora stagnorum* had the highest, albeit still low, zinc content. Iron (Fe) content: Compared to other species, *Microspora amoena* had the highest Fe content. This implies that if incorporated into the human diet, particularly as an iron supplement, there may be nutritional advantages. *Microspora amoena* and *Microspora willeana* both had the greatest potassium (K) levels. The potassium (K) concentrations in the remaining species were comparable, albeit slightly lower, implying a relatively consistent rate of K utilization within the genus. Notably, *Microspora amoena* exhibited significantly higher sodium (Na) content compared to its counterparts. This elevated sodium level may limit its suitability for certain dietary applications, given the potential health risks associated with excessive sodium intake. Conversely, all other species displayed remarkably low calcium (Ca) values, with *Microspora amoena* again showcasing the highest Ca concentration. *Microspora amoena* demonstrates promise as a rich source of potassium and iron. The potassium content can contribute to maintaining cardiovascular health, while its high iron content makes it an attractive option for addressing iron deficiency. However, the high sodium content in *Microspora amoena* warrants caution, particularly for individuals with salt sensitivities or related health conditions. To make *Microspora amoena* more suitable for human consumption, selective breeding or additional processing methods could be employed to reduce its salt content. Further investigation is necessary to determine the bioavailability of these elements in human and animal diets and to explore strategies for balancing the elemental composition, particularly in species with high salt and low calcium levels. These algae species can be cultivated as

aquaculture additives or biofertilizers to enhance the nutritional value of fish, presenting opportunities for innovative applications in agriculture and environmental sustainability.

REFERENCES

Richmond, A. (2004). *Handbook of Microalgal Culture: Biotechnology and Applied Phycology*. Blackwell Publishing.

Pulz, O., and Gross, W. (2004). Valuable products from biotechnology of microalgae. *Applied Microbiology and Biotechnology*, 65(6), 635-648.

Becker, E. W. (2007). Microalgae as a source of protein. *Biotechnology Advances*, 25(2), 207-210.

Wetzel, R. G. (2001). *Limnology: Lake and River Ecosystems* (3rd ed.). Academic Press.

Reynolds, C. S. (2006). *The Ecology of Phytoplankton*. Cambridge University Press.

Bellinger, E. G., and Siguee, D. C. (2010). *Freshwater Algae: Identification, Enumeration and Use as Bioindicators*. Wiley-Blackwell.

Rai, P. K., Singh, M. M., and Upadhyay, A. K. (2013). Algae as bioindicators of water quality in the river Ganga: A case study. *Environmental Monitoring and Assessment*, 185(3), 1949-1958.

Genter, R. B., Lehman, R. M., and Bolton, H. (2014). Algal Bioassays for Assessing Nutrient Limitation in Freshwater Systems. *Journal of Phycology*, 50(4), 533-539.

Wu, H., Miao, X., Yu, Z., and Wang, M. (2015). Nutrient Composition of Various Algal Species. *Food Chemistry*, 173, 400-406.

Laskar, M. A., and Gupta, S. K. (2009). Freshwater Algae as Potential Sources of Minerals. *Journal of Algal Biomass Utilization*, 1(1), 57-62.

Iqbal, M., Iqbal, N., and Khan, N. (2006). Heavy Metal Uptake by Freshwater Algae and Their Potential for Environmental Remediation *Journal of Applied Phycology*, 18(3), 315-326.

Rou, N., and Borah, B. (2010). Role of freshwater algae in nutrient cycling. *Journal of Environmental Biology*, 31(5), 715-719.

Choudhary, M. (2011). Studies on freshwater green algae. *Algal Research*, 5(3), 199-210.

Kumar, M., and Sahu, R. K. (2012). Algae as a Bioremediation Tool: A Review. *Journal of Environmental Science and Technology*, 5(4), 181-192.

Baruah, J., Sarma, K., and Sharma, P. (2013). Freshwater algae and their role in bioremediation. *Research*

Deb, U., Pal, A., and Singh, R. P. (2013). Application of freshwater algae as bioindicators of water quality. *Environmental Monitoring and Assessment*, 185(8), 6803-6815.

Marry, L., and Franson, M. A. (1992). *Standard Methods for the Examination of Water and Wastewater*. American Public Health Association (APHA).

Gomez, K. A., and Gomez, A. A. (1984). *Statistical Procedures for Agricultural Research*. John Wiley and Sons.