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ABSTRACT: This study presents observations of ion waves having low-frequencies and their
associated ion velocity distribution functions (VDFs) from the Earth’s magnetosphere and solar wind,
using the data from Cluster mission. The ion VDFs observed are characterized as non-Maxwellian,
comprising a predominant cold component alongside hot tenuous components. We derive the
dispersion relation of low-frequency ion waves, by fitting the parameters of observed VDFs, and
numerically obtained the instability growth rate. We further investigate the influence of superthermal

particles on the instability.
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INTRODUCTION

The dynamics of space plasmas are primarily
influenced by collective cyclotron wave-particle
interactions. Previous researches (Xiao et al., 1998,
2006a; Lu and Wang, 2006; Lu et al., 2006), has shown
that particle anisotropy often triggers instabilities in space
plasmas, while increased particle scattering tends to
diminish this anisotropy, leading to a stable state that
aligns with an instability threshold. The foundational
work by Kennel and Petschek (1966) has shown that
particle distributions remain close to these instability
thresholds due to wave-particle interaction caused by
larger fluctuations, hence reducing the anisotropy.
Previous investigations on bi-Maxwellian plasmas have
shown that the threshold condition of electromagnetic ion
cyclotron (EMIC) instability limits the temperature
anisotropy of particles. This upper limit is inversely
related to the particle parallel beta (Gary, 1993; Gary and
Lee, 1994; Gary et al.,, 1994a, 1997). Observational
analyses have confirmed this upper bound on
superthermal proton temperature anisotropies in regions
such as the magnetosheath, near geostationary orbit, and
within the magnetosphere (Gary et al., 1993; Anderson et
al., 1994; Fuselier et al., 1994).

According to the data observed by WIND/SWE,
further investigations have shown that similar limitations
on temperature anisotropy of protons by HELIOS
observations (Marsch et al., 2004) and within solar wind
plasma (Gary et al., 2001; Kasper et al., 2002, 2003,
2006). To explore the characteristics of anisotropy
restrictions related to whistler instability, electron mirror
instability, and electron Weibel instability, Gary and
Karimabadi (2006) applied the linear theory. According
to the observations, outer magnetosphere (L>5) is the
region where ions particularly protons often consist of
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both the components, i.e., superthermal anisotropic and
cold (Gurnett and Frank, 1974; McComas et al., 1993).

However, natural space plasmas are generally
considered to be hot, tenuous, and collision-free, exhibit a
clear non-Maxwellian tail in the profile of the distribution
and effectively modelled by kappa distribution
(Vasyliunas, 1968; Christon et al., 1988; Maksimovic et
al., 1997; Vinas et al., 2005). Such population of
enhanced tail is significantly affect the anisotropy
instability threshold conditions linked, as velocity
distribution plays a crucial role in determining particle
anisotropy. It has been found that velocities significantly
exceeding thermal speeds are primarily responsible for
gyro-resonant wave-particle interactions. Xiao et al.
(2006b) conducted a research on the whistler instability
threshold condition, generally modelled using the bi-
kappa distribution function, in regions where both hot
anisotropic electron and cold plasma components are
there. This research based on earlier studies focused on a
single hot electron within a simple Maxwellian plasma
(Gary and Wang, 1996; Gary et al., 2000, 2005).

Consequently, it is essential to employ an
observed VDF for superthermal protons in a multi-
species plasma to gain deeper understanding of the EMIC
instability by deriving real frequency and growth rates. In
Section 2, we present the observed distribution using
Cluster data and fit it with the bi-Kappa distribution. We
then employ the observed plasma parameters and the
spectral index kappa to numerically calculate the real
frequency and growth rate values.

Observed Distribution and Fitting: We use the
following kappa distribution to model the observed
distribution.
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where plasmaspheric plume. It is observed by Cluster C1 that
2x—3) [T EMIC waves scatter the RC ions in the outer boundary of

6, = -—= i ) plasmaspheric plume. We choose a time period when the

K m EMIC waves excited and observed the ion velocity

distribution at the time when the EMIC waves excitation

9, = w ﬂ 3) is at the peak. In Fig. 1, the observed distribution is
* K m shown (blue solid circles) which is modelled by the bi-
are the parallel and perpendicular thermal speeds,  kappa distribution (red solid line). We can see that the

respectively, modified due to the presence of k. Here, I observed distribution consists of three components cold,
is gamma function, mbe the ion mass, T;, T, corresponds ~ Strhal and hot, and is well modelled by kappa

to the parallel and perpendicular temperatures, distribution. The values of kappa indices and other
respectively, and o (= c, s, b) where ¢ = cold, s = strahl observed parameters are shown in the figure caption that
and h =hot. are used to model the observed distribution.

We present in situ observation of Cluster C1
satellite on 18 July 2005, when it crosses the
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Figure 1: Fitting of the observed distribution with the kappa distribution. The fitting values are k.= 2.7,
ks = 1.8, k, = 15.1, n, = 0.99922 n, n, = 0.00009 n, n, = 0.00069n, T, = 4.73974 eV, T, =
18.959 eV, T, = 51.7063 eV, T,, = 137.883 eV, Ty, = 779.903 eV, T;,, = 869.528 eV.

Real Frequency and Growth Rate: The general dispersion relation for electromagnetic hot plasma for the kappa
distributed plasma in the parallel direction, is

2
Exx — 1 €xy €xz; T nmny
2 —
—€yx €yy — N €yz =0 4)
2
_Ezy + mn, _Ezy €z — Ny
The trivial solution of equation (4) can be written as
2
€Exx — 1 €xy €xz T nny
2 —
—€yx €yy — N €yz =0 )
2
_GZY + mn, _ezy €zz — Ny

For parallel propagating waves k, = 0, the above equation can be reduced as
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Exx — n"2 €Exy 0
Exy Exx — nIIZ 0f(=0 (©)
0 0 €47
We now solve the above determinant, as
2k2 C2k2
(€xx + iexy - 7) (€xx — iexy - F) =0 ™
As, we know that the €,,, and €, components of hot dielectric tensor are (Summer et al., 1994)
la) 2
=" orn oin [foz @) +(1+¢29) (— - 1)] (8)
Exx = 2 [fozx(f) + (1 + fZK(f)) (F - 1)] (9)
I
Now by putting Egs. (8) and (9) in Eq. (7) we get
2k2
- + == [foZ &+ <— - 1) (1+ fzk(f))] =0 (10)
pz
w—10N
where & = k||9|| &= e , (sD)
1 I'k+1) (A +x%/k)""
Zx(f) = dx (11)

Vel —1/2132 ] (x =9

The above Eq. (10) is the dispersion relation of EMIC waves.

Numerical Results: In order to numerically plot the above dispersion relation, we write Eq. (10), as

1
Ar+1)z—A z—1
0=k2+z—|lAT+(T ) —Z — JI (12)
3\2 52 3\2 537
k (1—;) g \k(1-2)'5
where
k 8 T
Z=Q£i;k=;—pi ; Ap = —1 and ,8" —Ttno"
In the above Eq. (12), we have taken k, = k. much difference between their values for all the range of
We now solve the Eg. (12) numerically and plot the real wave numbers. Figure 3 displays the growth rates for
frequency and growth rate in Figs. 2 and 3 using the same kappa distributed plasma (solid blue line) as well as for
parameters as given in Fig. 1. Figure 2 displays the real Maxwellian plasma (dashed blue line). We note that the

frequency of EMIC waves for kappa distributed plasma growth rate for kappa distributed plasma is not only
(solid black line) and for Maxwellian plasma (dashed higher than the Maxwellian plasma but also has a wide
black line). We note that real frequency for both the wavelength range.

plasmas shows very similar behavior and there is not
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Figure 2: Real frequency for kappa distributed plasma (solid black line) and for Maxwellian plasma (dashed
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Figure 3: Growth rate for kappa distributed plasma (solid blue line) and for Maxwellian plasma (dashed blue

line) for the same parameters given in Fig. 1.

Conclusion: This study presents the observations of ion
VDF from the Earth's plasmaspheric plume using the
Cluster 1 data when the EMIC waves are generated
during the recovery phase of the geomagnetic storm that
occurred on July 18, 2005. We observe the ion VDF
when the EMIC wave activity is at its maximum. We
found that the distribution contains three components,
cold, strahl and hot. All these three components are
modelled by using the bi-kappa distribution functions.
Using the fitted wvalues of kappa indices and
corresponding observed parameters such as density and
temperature, we plot the real frequency and growth rate
plots for the EMIC waves. We found that the real
frequency sows very little deviation from the
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Maxwellian, however, the growth rate is higher than the
Maxwellian. We conclude that the growth rate observed
from the Maxwellian underestimates the actual growth
rate which is based on the observed distribution. Thus,
we should use the observed values rather than rely on the
idealized conditions as we have been doing in the past.
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