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ABSTRACT: Bipolar electric field solitary (EFS) structures are essential components of space 

plasmas. Bipolar structures, which are associated with solitons, have been detected by numerous 

satellites across various areas of near-Earth plasmas, including the solar wind, Earth's magnetosphere, 

auroral zone, and Martian magnetosheath. A fluid model is presented in this paper that incorporates 

inertial warm ions and adiabatically trapped electrons, deriving the Sagdeev potential from fully 

nonlinear fluid equations. Our findings indicate that bipolar EFS structures, which correspond to 

compressive solitons, can emerge in such plasmas. The results of our model provide valuable insights 

for interpreting solitary structures in space plasmas where trapped electrons are present. 
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INTRODUCTION 

 Bipolar electric field solitary (EFS) structures 

represent a unique category of nonlinear waves that 

maintain shape while propagation. Such structures are 

frequently observed in the solar wind, Martian 

magnetosheath, reconnection sites within Earth's 

magnetosphere, Earth's bow shock, and the auroral 

region, as reported by various satellites (Thaller et al., 

2022; Varghese et al., 2022; Vasko et al., 2020; Guo, 

2014; Lapenta et al., 2011). In the auroral region, these 

structures typically arise when electrons are trapped in 

the magnetic field.  

 The study of one-dimensional solitary waves 

began with Washimi and Taniuti (1966), who employed 

the reductive perturbation method. Since then, numerous 

authors have extensively investigated nonlinear solitary 

waves under both small and finite amplitude conditions. 

The Sagdeev potential technique has proven to be the 

most effective method, as it comprises of fully nonlinear 

equations. Sagdeev was the first to analyze nonlinear ion-

acoustic waves while considering the complete 

nonlinearity (Sagdeev, 1966). Concerning the Sagdeev 

potential, Witt and Lotko (1983) were pioneers in 

studying nonlinear ion-acoustic waves in Maxwellian 

plasma. Research on unmagnetized, multicomponent ion-

acoustic waves has revealed only positive solitary 

structures (Lakhina et al., 2008). Additionally, studies on 

ion-acoustic waves in weakly relativistic plasmas with 

ion beams have shown that both rarefactive and 

compressive solitons can exist (Barman and Talukdar, 

2012). 

 Bernstein, Greene, and Kruskal were the first to 

consider the trapping effect on the nonlinear dynamics of 

the wave caused by the wave itself. Later on, trapping 

was recognized as a microscopic phenomenon (Gurevich, 

1967). Trapping was then experimentally confirmed as a 

microscopic phenomenon with 3/2 power nonlinearity, in 

contrast to the second order power nonlinearity observed 

when there is no trapping, as supported by numerical 

simulations (Sagdeev, 1966).The propagation features of 

ion-acoustic waves influenced by the trapping effect have 

been examined in both Maxwellian and non-Maxwellian 

plasmas (Abbasi et al., 1999; Mushtaq and Shah, 2006). 

These studies found that the propagation features were 

altered, with regular solitons observed in the former case 

and spiky solitons produced in the latter. Trapping has 

also been explored in one-dimensional cases within 

quantum plasmas (Shah et al., 2010), relativistic 

degenerate quantum plasmas (Shah et al., 2011), quantum 

plasmas with quantizing magnetic fields (Shah et al., 

2012), and quantum dusty plasmas (Ayub et al., 2011). 

 Overall, it has been established that the 

transmission characteristics of nonlinear waves are 

modified when regular solitons are formed. Most 

previous studies on solitons have focused solely on ion 

dynamics or the nonthermal effects of electrons, or they 

have been limited to finite amplitude conditions. In this 

paper, we address this gap by considering adiabatically 

trapped electrons and analyzing fully nonlinear waves 

propagating in magnetized plasma through the derivation 

of the Sagdeev potential to obtain bipolar EFS structures.  

Theoretical Model: In this study, we examine a plasma 

in which 𝐵 = 𝐵0𝑧̂ and is composed of inertial ions and 

trapped electrons. To characterize the underlying physics 

of such bipolar structures, we will employ following 

equations (Kalita et al., 1986; Kalita and Bhatta, 1994):  
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𝑛𝑖
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Let the propagation of the wave is considered to be in the 

xz-plane, the set of equations (1) and (2) can be written 

as: 
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 In the equations presented above, 𝛼 = 𝑇𝑖/𝑇𝑒  and 

the normalized quantities are defined as follows; n by 

𝑛0,𝜌𝑖 = 𝑐𝑠/Ω𝑖, (where 𝑐𝑠 =  √𝑇𝑒/𝑚𝑖 and Ω𝑖 =
𝑒/(𝐵0𝑚𝑖)),𝑡 byΩ𝑖,𝑣 by 𝑐and 𝜑by 𝑇𝑒/𝑒. 

 Following the approach of Landau and Lifshitz 

(1980), trapped electrons are adhere to Maxwellian 

distribution. Consequently, the trapped electrons number 

density can be expressed as follows: 

𝑛𝑒 = 1 + 𝜑 −
4

3√𝜋
𝜑3/2                         (7) 

 It is important to note that power of 3/2 is 

introduced because of trapping in contrast to the typical 

second order terms observed when there is trapping. 

 By adopting a co-moving frame 𝜉 = 𝑘𝑥𝑥 +
𝑘𝑧𝑧 − 𝑀𝑡, and applying the quasineutrality condition i.e., 

𝑛𝑖 = 𝑛𝑒 = 𝑛we can reformulate equations (3)-(6) using 

equation (7) to express the three components of velocity, 

as 
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1
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2
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Here𝑀 = 𝑣/𝑐𝑠and𝑘𝑥
2 + 𝑘𝑦

2 = 1. In deriving these 

equations, we apply boundary conditions𝑣𝑖𝑥 = 𝑣𝑖𝑧 = 0 at 

𝑛 = 1as 𝜉 ⟶ ∞.Upon solving these equations, we arrive 

at the following specific result 
1

2
.
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/

2
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The conditions used in the derivation of above equation, 

is
𝑑𝑛

𝑑𝜉
= 0at 𝑛 = 1. Here Ψ(𝑛) is referred to as the 

Sagdeev potential, or pseudo potential, is defined as 

follows: 
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(12) 

Solitary waves can be derived from equation (12) if the 

Sagdeev potential Ψ(𝑛)meets following specific criteria 
Ψ(𝑁)|𝑁=1=Ψ(𝑁)|𝑁=𝑁=0

Ψ′(𝑁)|𝑁=1=0     Ψ′(𝑁)|𝑁=𝑁>0 

andΨ′′(𝑁)|𝑁=1<0  

                         (13) 

Therefore, to obtain solitary waves, the following 

condition must be satisfied 

𝑀2 > (1 + 𝛼)𝑘𝑧
2                 (14) 

Numerical Results: Numerical results are presented in 

this section when trapping of electrons are considered. 

Figure 1 illustrates Sagdeev potential structures for 

various Mach numbers. As the value of 𝑀 increases, 

Sagdeev potential’s both depth and width increase. The 

associated soliton structure is depicted in Figure 2, where 

we observe that both the amplitude and width of the 

solitons increase with increasing 𝑀.  

 Figure 3 shows the Sagdeev potential structures 

for various directions of propagation, i.e. 𝑘𝑧. It is clear 

from the figure that with the increase in obliqueness, the 

width as well as depth decrease. Associated solitons are 



Pakistan Journal of Science (Vol. 76 No. 4 December, 2024) 

 610 

presented in Fig. 4, where the amplitude and width of 

solitons increase as obliqueness decreases. Figure 5 

illustrates the Sagdeev potential structures for various 

ratios of 𝛼. It is evident from this figure that with the 

increasing temperature ratio, Sagdeev potential’s width 

and depth increase. Associated soliton are presented in 

Fig. 6, in which soliton’s amplitude decreases but width 

increases as temperature ratio rises. 

 
Figure -1: Plots showing Sagdeev potential for different values of M when 𝒌𝒛 = 𝟎. 𝟒and𝜶 = 𝟎. 𝟏. 

 
Figure -2: Soliton structures corresponding to Fig.-1. 

 

 
Figure -3: Plots showing Sagdeev potential plots for different values of 𝒌𝒛 when 𝑴 = 𝟎. 𝟒and𝜶 = 𝟎. 𝟏. 
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Figure -4: Soliton structures corresponding to Fig.-3. 

 

 
Figure -5: Plots showing Sagdeev potential plots for different values of 𝜶 when𝒌𝒛 = 𝟎. 𝟒 andM= 𝟎. 𝟒. 

 

 
Figure -6: Soliton structures corresponding to Fig.-5. 

 

Bipolar EFS structures: As = −
1

𝑛

𝑑 𝑛

𝑑𝜉
 , so equation (11) 

takes the form 

𝐸 = ∓√−
2

𝑛2 Ψ(𝑛)                          (15) 

 By using Eq. (12) in above Eq. (15), the bipolar 

EFS structures can be obtained. Equation (15) is plotted 

numerically in Figs.(7)-(10) for various plasma 

parameters.  

 In Fig. 7, bipolar EFS are shown for different 

values of 𝑀, clearly indicating that with the increase in 

𝑀, bipolar structures amplitude increases. Figure 8 

presents bipolar EFS for varying values of 𝑘𝑧, 

demonstrating that the amplitude decreases as the 

parameter increases. Similarly, Fig.9 depicts bipolar EFS 
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for different values of 𝛼, revealing a decrease in 

amplitude with increasing values. Finally, Figure 10 

illustrates bipolar EFS for various values of 𝑣𝑒, showing 

that the amplitude increases as the 𝑣𝑒 increases. 

 

 
Figure -7: Bipolar EFS structures for various Mach numbers when 𝜶 = 𝟎. 𝟏,and 𝒌𝒛 = 𝟎. 𝟒. 

 

 
Figure -8: Bipolar EFS structures for various 𝒌𝒛, when 𝜶 = 𝟎. 𝟏 and 𝑴 = 𝟎.𝟒. 

 

 
Figure -9: Bipolar EFS structures for various𝜶, when 𝒌𝒛 = 𝟎. 𝟒and 𝑴 = 𝟎. 𝟒. 

 

Summary and Conclusion: Present manuscript, 

presented a nonlinear model developed to investigate the 

effect of trapped electrons on bipolar EFS structures. We 

derived the energy integral equation, so called the 

Sagdeev potential, by employing nonlinear fluid 

equations and numerically obtained associated bipolar 

EFS structures for various plasma parameters. Our 

model's findings are as follows: (i) both the width and 
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amplitude of soliton increase with an increase in value of 

𝑀; (ii) the soliton's amplitude and width decrease as 

obliqueness increases; (iii) when the ion-to-electron 

temperature ratio increases, the soliton's amplitude 

decreases while its width increases; (iv) the amplitude of 

bipolar electrostatic field structures rises with an increase 

in M; (v) the amplitude of these structures increases as 

the 𝛼 decreases; and (vi) with the increase in the 

obliqueness, bipolar EFS structures decreases. We 

anticipate that the present model is valuable in 

interpreting space observations related to trapped 

electrons in the plasma. 
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