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ABSTRACT: Bipolar electric field solitary (EFS) structures are essential components of space
plasmas. Bipolar structures, which are associated with solitons, have been detected by numerous
satellites across various areas of near-Earth plasmas, including the solar wind, Earth's magnetosphere,
auroral zone, and Martian magnetosheath. A fluid model is presented in this paper that incorporates
inertial warm ions and adiabatically trapped electrons, deriving the Sagdeev potential from fully
nonlinear fluid equations. Our findings indicate that bipolar EFS structures, which correspond to
compressive solitons, can emerge in such plasmas. The results of our model provide valuable insights
for interpreting solitary structures in space plasmas where trapped electrons are present.
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INTRODUCTION

Bipolar electric field solitary (EFS) structures
represent a unique category of nonlinear waves that
maintain shape while propagation. Such structures are
frequently observed in the solar wind, Martian
magnetosheath, reconnection sites within Earth's
magnetosphere, Earth's bow shock, and the auroral
region, as reported by various satellites (Thaller et al.,
2022; Varghese et al., 2022; Vasko et al., 2020; Guo,
2014; Lapenta ef al., 2011). In the auroral region, these
structures typically arise when electrons are trapped in
the magnetic field.

The study of one-dimensional solitary waves
began with Washimi and Taniuti (1966), who employed
the reductive perturbation method. Since then, numerous
authors have extensively investigated nonlinear solitary
waves under both small and finite amplitude conditions.
The Sagdeev potential technique has proven to be the
most effective method, as it comprises of fully nonlinear
equations. Sagdeev was the first to analyze nonlinear ion-
acoustic waves while considering the complete
nonlinearity (Sagdeev, 1966). Concerning the Sagdeev
potential, Witt and Lotko (1983) were pioneers in
studying nonlinear ion-acoustic waves in Maxwellian
plasma. Research on unmagnetized, multicomponent ion-
acoustic waves has revealed only positive solitary
structures (Lakhina et al., 2008). Additionally, studies on
ion-acoustic waves in weakly relativistic plasmas with
ion beams have shown that both rarefactive and
compressive solitons can exist (Barman and Talukdar,
2012).

Bernstein, Greene, and Kruskal were the first to
consider the trapping effect on the nonlinear dynamics of
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the wave caused by the wave itself. Later on, trapping
was recognized as a microscopic phenomenon (Gurevich,
1967). Trapping was then experimentally confirmed as a
microscopic phenomenon with 3/2 power nonlinearity, in
contrast to the second order power nonlinearity observed
when there is no trapping, as supported by numerical
simulations (Sagdeev, 1966).The propagation features of
ion-acoustic waves influenced by the trapping effect have
been examined in both Maxwellian and non-Maxwellian
plasmas (Abbasi ef al., 1999; Mushtaq and Shah, 2006).
These studies found that the propagation features were
altered, with regular solitons observed in the former case
and spiky solitons produced in the latter. Trapping has
also been explored in one-dimensional cases within
quantum plasmas (Shah et al., 2010), relativistic
degenerate quantum plasmas (Shah et al., 2011), quantum
plasmas with quantizing magnetic fields (Shah et al.,
2012), and quantum dusty plasmas (Ayub et al., 2011).
Overall, it has been established that the
transmission characteristics of nonlinear waves are
modified when regular solitons are formed. Most
previous studies on solitons have focused solely on ion
dynamics or the nonthermal effects of electrons, or they
have been limited to finite amplitude conditions. In this
paper, we address this gap by considering adiabatically
trapped electrons and analyzing fully nonlinear waves
propagating in magnetized plasma through the derivation
of the Sagdeev potential to obtain bipolar EFS structures.

Theoretical Model: In this study, we examine a plasma
in which B = ByZ and is composed of inertial ions and
trapped electrons. To characterize the underlying physics
of such bipolar structures, we will employ following
equations (Kalita et al., 1986; Kalita and Bhatta, 1994):
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Let the propagation of the wave is considered to be in the
xz-plane, the set of equations (1) and (2) can be written
as:
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In the equations presented above, a = T; /T, and
the normalized quantities are defined as follows; n by
Ng,p; = Cs/Q;, (where ¢, = /T,/m; and Q; =
e/(Bym;)),t byQ;,v by cand @by T, /e.

Following the approach of Landau and Lifshitz
(1980), trapped electrons are adhere to Maxwellian
distribution. Consequently, the trapped electrons number
density can be expressed as follows:
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It is important to note that power of 3/2 is

introduced because of trapping in contrast to the typical
Y (n)
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second order terms observed when there is trapping.
By adopting a co-moving frame ¢ = k,x +
k,z — Mt, and applying the quasineutrality condition i.e.,
n; = n, = nwe can reformulate equations (3)-(6) using
equation (7) to express the three components of velocity,
as
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HereM = v/csandk; + kj = 1. In  deriving these

equations, we apply boundary conditionsv;, = v;, = 0 at
n = las { — «.Upon solving these equations, we arrive
at the following specific result
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The conditions used in the derivation of above equation,
isz—g= O0at n=1. Here ¥Y(n) is referred to as the
Sagdeev potential, or pseudo potential, is defined as
follows:

(12)

+ kZ(1 4 2a))DawsonF[/Log[n]]

+ 2k2n3(=9v2n(m? — kz2a)DawsonF[v2,/Log[n]]

+ 2V3k2n?DawsonF[v3,/Log[n]] — 6(—3m?(-2 + n)
+ kZ(—3 + n? + 3(—2 + n)a))./Log[n])

+ 3V (—2kin3(—3 + n? + 6na + 6a(—1 + 2a))

+ 6m2(m2(—2 + 4n) + k2*n3 (=2 + n + 2a))

+ k2(kx*n3(6 — 2n? — 9na — 12(—1 + a)a) + 6m?(1
+n* + 2a — 4na + n3 (=2 + 4a))) + 6n?(—2kim?a
+ 2kz*a (1 + 2a) + kZ(m?(2 — 4a) + k2a(1

+ 2a)))Log[n])))

(
2
[{"(1 + \/i; Vinn) + a} k% + 2a + n)kZ — _21’;2] |l 36M?2n?2

(—36k2n3(—2M?
Vi

{6m?2(2m? + k2(—1 + 2a)) — 2k} (-2 + 6a + 6a(—1 + 2a)) +

kZ(12m?a + k2(4 — 9a — 12(—1 + a)a))}

12m?

Solitary waves can be derived from equation (12) if the
Sagdeev potential ¥(n)meets following specific criteria
Y(N)|N=1=Y(N)|n=N=0
¥ (N)|n=1=0 ¥ (N)|n=n>0 (13)
and¥’ (N)|y=1<0
Therefore, to obtain solitary waves, the following
condition must be satisfied
M? > (1 + a)k? (14)
Numerical Results: Numerical results are presented in
this section when trapping of electrons are considered.
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Figure 1 illustrates Sagdeev potential structures for
various Mach numbers. As the value of M increases,
Sagdeev potential’s both depth and width increase. The
associated soliton structure is depicted in Figure 2, where
we observe that both the amplitude and width of the
solitons increase with increasing M.

Figure 3 shows the Sagdeev potential structures
for various directions of propagation, i.e. k,. It is clear
from the figure that with the increase in obliqueness, the
width as well as depth decrease. Associated solitons are
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presented in Fig. 4, where the amplitude and width of
solitons increase as obliqueness decreases. Figure 5
illustrates the Sagdeev potential structures for various
ratios of a. It is evident from this figure that with the

increasing temperature ratio, Sagdeev potential’s width
and depth increase. Associated soliton are presented in
Fig. 6, in which soliton’s amplitude decreases but width
increases as temperature ratio rises.

Figure -3: Plots showing Sagdeev potential plots for different values of k, when M = 0.4anda = 0.1.
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Figure -4: Soliton structures corresponding to Fig.-3.
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Figure -6: Soliton structures corresponding to Fig.-5.

Bipolar EFS structures: As = — %‘;—; , S0 equation (11)

takes the form

E=F /—%\P(n) (15)

By using Eq. (12) in above Eq. (15), the bipolar
EFS structures can be obtained. Equation (15) is plotted
numerically in Figs.(7)-(10) for wvarious plasma
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parameters.

In Fig. 7, bipolar EFS are shown for different
values of M, clearly indicating that with the increase in
M, bipolar structures amplitude increases. Figure &
presents bipolar EFS for varying values of k,,
demonstrating that the amplitude decreases as the
parameter increases. Similarly, Fig.9 depicts bipolar EFS
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for different values of «, revealing a decrease in
amplitude with increasing values. Finally, Figure 10
illustrates bipolar EFS for various values of v,, showing

that the amplitude increases as the v, increases.
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Figure -9: Bipolar EFS structures for variousa, when k, = 0.4and M = 0.4.

Summary and Conclusion:

Present

manuscript,

presented a nonlinear model developed to investigate the
effect of trapped electrons on bipolar EFS structures. We
derived the energy integral equation, so called the
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Sagdeev potential, by employing nonlinear fluid
equations and numerically obtained associated bipolar
EFS structures for various plasma parameters. Our
model's findings are as follows: (i) both the width and
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amplitude of soliton increase with an increase in value of
M; (ii) the soliton's amplitude and width decrease as
obliqueness increases; (iii) when the ion-to-electron
temperature ratio increases, the soliton's amplitude
decreases while its width increases; (iv) the amplitude of
bipolar electrostatic field structures rises with an increase
in M; (v) the amplitude of these structures increases as
the a decreases; and (vi) with the increase in the
obliqueness, bipolar EFS structures decreases. We
anticipate that the present model is valuable in
interpreting space observations related to trapped
electrons in the plasma.
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