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ABSTRACT: Alfven waves are important for energy transfer mechanisms and plasma heating in 

space and laboratory plasmas. Finite Larmor radius effect and oblique propagation induce parallel 

electric fields, making these waves dispersive. These waves' dispersive nature makes them key players 

for auroral acceleration, turbulent heating, magnetosphere-ionosphere coupling and energy deposition 

at rector edges. In this paper, we have investigated linear dynamics of kinetic Alfven waves (KAWs) in 

low-𝛽electron-ion plasmas by using two-potential theory and considering electrons following 

generalized       distribution function. Our results underscore the complex interplay between 

wavenumber, obliqueness, and distribution parameters in determining the frequency behavior of 

KAWs. The sensitivity of the fast mode to obliqueness and the significant influence of the   and   

parameters highlight important factors that must be considered in understanding wave dynamics in 

plasma environments. 
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INTRODUCTION 

 Alfven waves, the most fundamental 

magnetohydrodynamics (MHD) mode in plasma physics, 

have been researched extensively in the past decades. 

These waves are non-dispersive in nature due to a finite 

ion gyroradius effect. When the time scale is comparable 

to the ion orbital motion or the scale length is comparable 

to the ion kinetic scale, which is gyroradius of ions, these 

waves are capable of keeping a strong enough parallel 

electrostatic field along with magnetic fluctuations. 

Therefore, these waves can use transit time interactions 

or Landau damping to channelize wave-particle energy 

exchange. One plausible explanation for particle and 

energy transport is plasma turbulence(Gershman et al., 

2017). An isotropic magnetic pressure 𝑃𝐵 =
𝐵0
2

2𝜇0
and a 

magnetic tension 𝑇𝐵 =
𝐵0
2

𝜇0
  along the magnetic field lines 

are the mechanical aspects of a magnetic field𝐵0. It is 

analogous to the theory of stretched strings, indicating 

that this tension may result in wave propagation 

transverse to the field lines. 

 When perpendicular wavelength is equal to the 

ion gyroradius, the electrons will remain attached to the 

field lines owing to their small Larmor radius, while the 

ions will have finite Larmor radius. This will cause 

charge separation, resulting in what are known as kinetic 

Alfven waves (KAWs). KAWs are far more intriguing 

than their customary MHD counterparts due to their 

dispersive nature. In the range of short perpendicular 

wavelengths  𝜆⊥  comparable to the ion gyroradius, 

kinetic Alfven waves (KAWs) are an extension of ion-

acousticwaves(Cramer, 2001).The Mixture of KAW 

(when, 𝑚𝑒/𝑚𝑖 ≪ 𝛽 ≪ 1) and inertial Alfvén waves 

(IAWs) (when, 𝛽 ≪ 𝑚𝑒/𝑚𝑖 ≪ 1 , 𝛽 is thermal to 

magnetic pressure ratio, is known as dispersive Alfven 

waves (DAW) where, 𝛽 ≡
𝑛𝑇

𝐵0
2/2𝜇0

 

 Kinetic Alfven waves (KAWs) can be essential 

in the in-homogeneous heating of magnetoplasma 

structures because of their dispersive nature. The Linear 

theory of the kinetic Alfven wave has primarily 

developed around the different modified effects of the 

ideal Alfven wave caused by plasma processes, which 

render the MHD approach invalid and cause the Alfven 

wave to become dispersive.  

 In-situ measurements in space plasma reveal 

flat-tops and high-energy tails in distribution profile of 

charged particles species. In past, several distribution 

functions have been employed to tackle unexplained 

processes in space plasmas. The data investigation of 

space plasmas utilizing the generalized       distribution 

function showed better qualitative and quantitative 

agreement with the observed parameters than studies that 

employed kappa and other non-Maxwellian distribution 

functions(Qureshi et al., 2014, Qureshi et al., 2019). The 

generalized       distribution function not only 

encompass flat-topped distributions but also high energy 

tails and peaks at low energies in the distribution profile. 

In the limiting case, it reduce to kappa and Maxwellian 

distribution functions. 

 In this paper, we have developed Linear theory 

based on two-fluid model and investigated linear 
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frequency of the waves where electrons are following 

generalized       distribution function.  

Theoretical Investigations: In order to investigate the 

coupling interaction between ion acoustic waves (IAWs) 

and kinetic Alfven waves (KAWs) at low frequencies, we 

have accounted ion inertia effect and parallel current 

densities. Whereas, density of electrons is calculated 

using generalized       distribution function.  

𝑛𝑒 = 𝑛𝑒𝑜[1 + 𝛼1Ψ +  𝛼2Ψ2]                      (1) 

 Here 𝛼1 and 𝛼1 are constants depending upon 

generalized       distribution function,  

𝛼1 =
 𝑞−1 

− 
1

 1+𝑟 

2 𝐶 

Г(
1

2 1+𝑟 
)  Г(𝑞−

1

2 1+𝑟 
)

Г(
3

2 1+𝑟 
)  Г(𝑞−

3

2 1+𝑟 
)
                 (2) 

𝛼2 =
3 𝑞−1 

− 
2

 1+𝑟 

8 𝐶2

Г(1−
1

2 1+𝑟 
)  Г(𝑞+

1

2 1+𝑟 
)

Г(1+
3

2 1+𝑟 
)  Г(𝑞−

3

2 1+𝑟 
)
              (3) 

𝐶 =
3  𝑞−1 −1/ 1+𝑟 Γ*𝑞−

3

2+2 𝑟
+Γ*

3

2+2 𝑟
+

2 Γ*𝑞−
5

2+2 𝑟
+Γ*

5

2+2 𝑟
+

                     (4) 

 Here,   and   are spectral indices that 

characterize flat top and high-energy tail, respectively, in 

the distribution profile of particles under some 

conditions, > 1 and    + 1 > 5/2(Qureshi et al., 

2013). In the limiting cases, when  = 0,  → ∞ and 

 = 0,  →  𝜅 + 1 , the       distribution function 

reduces to the Maxwellian and kappa distributions 

respectively. 

 Propagation of wave is considered in the x-z 

plane and𝐵𝑧 = 𝐵0 and 𝐵𝑥 = 0. We made use of two-

potential theory under the assumption 
𝑚𝑒

𝑚𝑖
< 𝛽 <

1.i.e.𝐸𝑥 =
−𝜕𝜑

𝜕𝑥
,𝐸𝑧 =

−𝜕𝜓

𝜕𝑧
 and  𝐸𝑦 = 0.                                  

 A set of governing equations is given below. 

The continuity equations for ion and electron are as 

follows 
𝜕𝑛𝑖

𝜕𝑡
+

𝜕

𝜕𝑥
 𝑛𝑖𝑣𝑖𝑥 +

𝜕

𝜕𝑧
 𝑛𝑖𝑣𝑖𝑧 = 0                                 (5) 

𝜕𝑛𝑒

𝜕𝑡
+

𝜕

𝜕𝑧
 𝑛𝑒𝑣𝑒𝑧 = 0                                            (6) 

 The momentum equation for ions is 

𝑚𝑖 (
𝜕𝒗𝒊

𝜕𝑡
+  𝒗𝒊. 𝛁 𝒗𝒊) = 𝑒 𝑬 + 𝒗𝒊 × 𝑩𝑜            (7) 

 Using Ampere’s law and induction 

equation(Masood et al., 2015), we obtain 
𝜕4

𝜕𝑥2𝜕𝑧2
 ϕ − 𝜓 = µ

𝒐

𝜕2

𝜕𝑡 𝜕𝑧
𝑗𝑧                   (8) 

where current density 𝑗𝑧 = 𝑛𝑒𝑒 𝑣𝑖𝑧 − 𝑣𝑒𝑧 . 

 Using the above current density relation and Eq. 

(6), we get the following expression 
𝜕𝑗𝑧

𝜕𝑧
= 𝑒

𝜕𝑛𝑒

𝜕𝑡
+ 𝑒

𝜕

𝜕𝑧
 𝑛𝑖𝑣𝑖𝑧                     (9) 

 Upon linearizing Eqs. (5)-(9) and 

simultaneously solving for linear frequency of coupled 

kinetic Alfven acoustic wave (CKAAW), we get the 

following linear dispersion relation (Sabeen et al., 2015) 

(1 −
𝑉𝐴

2𝑘𝑧
2

𝜔2 ) (1 −
𝑐𝑠

2𝑘𝑧
2

𝑎1𝜔
2 ) =

𝑉𝐴
2𝑘𝑧

2

𝑎𝜔2 𝜆𝑠            (10) 

Here 𝑉𝐴 =
𝐵𝑜

µ𝒐𝑛𝑖 𝑚𝑖
,  𝛺𝑖 =

𝑒 𝐵𝑜

𝑚𝑖
 and 𝑐𝑠 = √

𝑇𝑒

𝑚𝑖
 are Alfven 

velocity, ion-cyclotron frequency and sound speed 

respectively. Also 𝜆𝑠 = 𝑘𝑥
2𝜌𝑠

2 is the coupling parameter 

and 𝜌𝑠 =
𝑐𝑠

 𝑚𝑖
is ion larmor radii. The term containing 𝑎1on 

L. H. S of Eq.(10) (the acoustic term) is the ratio of sound 

velocity and phase velocity which becomes unity when 

phase velocity is much higher than sound velocity and we 

get the linear dispersion relation of KAWs(Hasegawa 

1976, Khalid, et al., 2018) 

𝜔2 = 𝑉𝐴
2𝑘𝑧

2 (1 +
𝜆𝑠

𝑎1

) 

RESULTS AND CONCLUSION 

 In this section, we present our graphical results 

of the linear dispersion relation for KAW.

 

 
Figure-1: Plots of frequency vs. wave number of KAW when =  .  . 
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 Figure-1 shows the plot of the linear dispersion 

relation of KAW for different obliqueness. The graph 

depicts that the linear frequency has two modes: the 

Alfvenic mode (thick lines) and the acoustic mode (thin 

lines). The slow mode has been designated as the ion-

acoustic branch, and the fast mode as the kinetic Alfven 

branch. It can be seen from the plot that the frequency of 

both fast and slow modes increases with the increase in 

wavenumber. Also, the frequency of both Alfvenic and 

acoustic modes decreases by increasing the obliqueness 

of the wave. However, in this case, the fast mode exhibits 

a more pronounced change in frequency. 

 

 
Figure-2:Plot of frequency vs. wave number for KAW when β=0.1. 

 
Figure-3:Plot of frequency vs. wave numberfor KAW when =  .  . 

 
 Figure-2 shows the plot of linear frequency of 

KAW for different values of  while keeping the   

parameter fixed. The graph depicts that the linear 

frequency has two modes: the Alfvenic mode (thick lines) 

and the acoustic mode (thin lines). It is clear from the 

figure that the frequency of both Alfvenic mode and 

acoustic mode increases with the increase in the value 

of   . 

 Figure-3 depicts the plot of linear dispersion 

relation of KAW for different values of  , keeping the 

flatness parameter   value fixed. The graph depicts that 

the linear frequency has two modes: the Alfvenic mode 

(thick lines) and the acoustic mode (thin lines). The slow 

mode has been designated as the ion-acoustic branch, and 

the fast mode as the kinetic Alfven branch. It is clear 
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from the figure that the linear frequency of both fast and slow modes increases with the increase in the value of  . 

 
Figure-4: Plot of frequency vs. wave number for KAW when =  .   and kappa = 4. 

 

 Figure 4 shows the comparison among kappa, 

Maxwellian,   and   values. It’s obvious that frequency is 

highest for both Alfvenic and acoustic modes of the 

(     distribution and lowest for the kappa distribution, 

frequency of   Maxwellian distribution lies between       

distribution and kappa distribution. On the other hand, the 

dispersion relations of various distributions differ for the 

kinetic Alfven branch, but only at higher values of the 

wave vector.  

Summary and Conclusion: The dispersion relation 

consistently exhibits two different modes: the slow mode, 

corresponding to ion-acoustic branch, and the fast mode, 

corresponding to kinetic Alfvén branch. These modes are 

observed across all examined conditions, including 

variations in obliqueness, the parameter  , and the 

parameter  . Both the slow and fast modes experience an 

increase in frequency with the increase in wavenumber, 

indicating a direct correlation between wavenumber and 

wave frequency. 

 Increasing the obliqueness of the wave leads to a 

decrease in frequency for both modes. Notably, the fast 

mode shows a more significant reduction in frequency 

with increasing obliqueness, highlighting its sensitivity to 

the angle of propagation relative to the magnetic field. 

The frequency of both slow and fast modes increases 

with higher values of the parameter   while keeping   

fixed. Similarly, increasing   while holding   constant 

also results in a rise in frequency for both modes. 

 These results suggest that both   and   

parameters play crucial roles in modulating the frequency 

of KAWs, with higher values leading to higher wave 

frequencies.A comparative analysis among different 

distributions—kappa, Maxwellian, and the       
distribution—reveals that the       distribution yields the 

highest real frequencies for both slow and fast modes. In 

contrast, the kappa distribution produces the lowest 

frequencies, with the Maxwellian distribution frequencies 

lying between the       and kappa distributions. The 

difference in dispersion relations across these 

distributions is more pronounced in the kinetic Alfvén 

branch, particularly at large values of the wave vector. 
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