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ABSTRACT: Small cells based ultradense heterogeneous networks (HetNets) are being considered as the 

one the promising solution for increased coverage and capacity in the 5G cellular networks. However, in the 

multi-tiered architecture, co-tier and cross tier interference are a performance-limiting factor. The interference 

can be effectively handled through efficient resource allocation techniques in either a cooperative or distributive 

manner. However, the complexity of such resource allocation schemes linearly increases with the density of the 

HetNets due to unplanned deployment and dynamic behavior of small cells. The HetNets can be implemented 

only through an adaptive and self-organizing algorithm that can adapt to the dynamic conditions. In this 

research paper, a machine learning (ML) based adaptive resource allocation scheme is proposed for the 

femtocell based dense HetNets. The Q-Learning based scheme consider each femtocell base station (FBS) as 

the agent of the network and model the HetNets as multi-agent network to allocate optimal power to the FBS to 

maximize the capacity of the femtocell user equipment (FUEs) an macrocell user equipment (MUEs) while 

considering the quality of service (QoS) requirements. The proposed cooperative Q-Learning scheme increases 

the sum capacity of the FUEs by seven-folds and always ensures the minimum QoS requirements as compared 

to the prior work. Furthermore, the proposed solution also increased the number of supported femtocells by 

two-fold in comparison to the state of the art solution. 
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INTRODUCTION 

The exponential growth in mobile users (UEs) in 

the last few years cannot be handled with traditional 

cellular networks. It is expected that by 2020, 50 billion 

users will be connected to the cellular network. The next 

generation of the cellular network i.e. 5th Generation 

(5G) is expected to meet the capacity and other quality of 

service (QoS) requirements like higher data rate, 

throughput and zero latency (Agiwal et al., 2016; 

Akpakwu et al., 2018; Parvez et al., 2018). However, 

meeting the fundamental requirements of the 5G is not an 

easy task. Many solutions have been proposed in the 

literature to enhance the capacity and other QoS 

requirements which include massive multiple inputs and 

multiple outputs (MIMO), millimeter-wave (mmW) 

communication, non-orthogonal multiple access 

(NOMA) and heterogeneous networks (HetNets) (Gupta 

and Jha, 2015). An overview of the 5G cellular network 

is presented in Fig-1. The HetNets are considered as the 

viable solution to meet the coverage and capacity 

requirements in 5G cellular networks, however, the 

deployment of the small cells in a multi-tiered 

architecture to form HetNets results in co-tier and cross 

tier inference. To effectively deploy the HetNets to 

increase capacity and coverage, the interference caused 

by the unplanned and dense deployment of the small cells 

has to be resolved (Gupta and Jha, 2015; Zhang et al., 

2015). In this paper, a cooperative power control scheme 

is proposed for the interference mitigation and enhancing 

and sum capacity of the femtocells. The proposed 

algorithm is based on the reinforcement learning (RL) 

scheme.  

HetNets are one of the solutions proposed in the 

literature to increase the coverage and capacity of the 

existing and future cellular networks. The idea is to 

deploy low-powered and small-ranged access points or 

base stations connected to the backhaul through optic 

fiber. These small ranged cells comprised of the low 

powered access point or base station are called small 

cells. Based on the transmission power and deployment 

scenario, small cells can be classified as the picocells, 

microcells, and femtocells. The detailed classification of 

small cells is discussed by (Gupta and Jha, 2015). The 

coverage radius of femtocells is approximately 200m 

which is very less as compared to macrocell which have 

coverage radius of 10-40Km (Gupta and Jha, 2015; 

Tseng et al., 2015). The comparison of different 

parameters of the femtocells and macrocell is presented 

in Table-1. Femtocells are connected to service providers 

through optic fiber. The macrocell and femtocells operate 

in the same frequency band and therefore macrocell users  
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Fig-1: Overview of 5G Cellular Networks (Gupta and Jha, 2015)  

 

Table-1: Comparison of Femtocell and Macro Cell in 

5G Cellular HetNets (Gupta & Jha, 2015). 

 

 Femtocell Macrocell 

Bandwidth (MHz) 20 60-75 

Output power  (W) 0.250 40-100 

Cell Radius (m) 200 10-40km 

No. of Users  32-100 1000+ 

Indoor/ Outdoor Indoor/ Outdoor Indoor/ Outdoor 

Backhaul  Microwave/ Fiber  Microwave/ Fiber  

 (MUEs) become primary users and femtocell 

users (FUEs) are considered as the secondary users which 

sense the spectrum holes and transmit intelligently 

(Sanchez et al., 2016). However, in the densely populated 

areas like an urban environment, the QoS is effected by 

the co-tier and cross tier interference. Interference can be 

mitigated in several ways however an adaptive power 

control is considered as an effective approach (Kurda et 

al., 2014; Yang et al., 2018). In the last few years, many 

interference mitigation and QoS improvement schemes 

have been proposed in the literature, however, most of 

such schemes do not consider the uncertainty for the 

deployment of femtocells in the macrocell and a self-

organizing the capability of the femtocells to adapt to the 

dynamic conditions. Machine learning (ML), which has 

recently got the attention of the researcher and scientists 

to provide cognition to the different types of systems, has 

also found many applications in cellular networks. RL, 

which is a type of ML is developed to optimize the 

unknown system by interacting with it. RL is a perfect 

solution in situations where systems are unknown and 

conditions are dynamic. Unlike the many other ML 

techniques, RL does not require training prior to the 

application (Whitehead, 1991). Due to this property, RL 

is being applied in the communication networks 

especially in the areas like resource allocation problems, 

dynamic spectrum access and other distributed nature 

problems (Bin et al., 2014; Feng et al., 2009; Galindo-

Serrano and Giupponi, 2010; Tefft and Kirsch, 2013). In 

this paper, the RL based scheme is proposed for power 

allocation to the femtocells to increase the sum capacity 

of the femtocells. 

Related Work: To solve the optimization problem of 

resource allocation in HetNets, a proper reward function 

in Q-learning is essential. The reward function can be 

selected or proposed based on the underlying 

optimization problem. To optimize the power allocation 

problem in HetNets, several reward functions have been 

proposed in the literature (Amiri et al., 2018; Bin et al., 

2014; Saad et al., 2012; Tefft and Kirsch, 2013). The 

power allocation problem can be solved either 

cooperatively  (Bin et al., 2014; Galindo-Serrano and 

Giupponi, 2010) or in the distributive manner (Saad et 

al., 2012; Tefft and Kirsch, 2013). Most of these schemes 

improve either QoS or Capacity of MUEs or FUEs and 

neglects the other parameters. The Round Robin 

approach has been used by (Bin et al., 2014), in order to 

improve the throughput of cell edge users while 

maintaining the fairness between FUEs and MUEs. (Saad 

et al., 2012), presented the work based on the cooperative 

Q-learning technique to maximize the sum capacity and 

maintain the threshold for the FUEs and MUEs 

respectively. However, QoS for the FUEs are ignored by 

both Bin et al., 2014 and Saad et al., 2012. Furthermore, 

the reward functions presented in the literature are not 

designed to handle the ultradense and unplanned 

networks. (Galindo-Serrano and Giupponi, 2010; Saad et 

al., 2012; Bin et al., 2014). However, (Tefft and Kirsch, 

2013), proposed a Q-Learning based solution to fairly 

allocate power to FBS by considering the proximity of 

FUEs and MUEs. However, this proposed solution could 

not provide the required QoS to the FUEs. Furthermore, 
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the details of the cooperation among the FUEs are also 

kept hidden. In this paper, we have proposed a Q-

Learning based solution to allocate optimal power to the 

FBS to increase the sum capacity of the FUEs while 

ensuring the minimum QoS requirements. The proposed 

solution successfully handled the limitations of the prior 

works. 

MATERIALS AND METHODS 

A. System Model: In this research, a single cell of a 5G 

cellular HetNets comprised of a single macro base station 

(MBS) and   femtocell base stations (FBSs) is 

considered. Initially, to keep the system model simple, 

only one femtocell user equipment (FUE) is assumed for 

each FBS. The objective of the research is to allocate 

optimal power in the downlink of a dense HetNets where 

co-tier and cross tier interference are the performance-

limiting factor. Although only one MUE and FUE for 

each FBS is assumed in this paper, the proposed solution 

can be implemented for the higher number of MUEs and 

FUEs. The signal received by the MUE receiver include 

cross tier interference and some thermal noise. Therefore, 

the signal-to-interference-noise-ratio (SINR) at the MUE 

and FUE is calculated as follows: 
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Following the assumptions made by (Feng et al., 

2009; Tefft and Kirsch, 2013), we also assumed that 

channel parameters are known by the FBS. As the FBSs 

are connected to the backhaul through optic fiber, 

therefore channel parameters can be easily shared.  

Finally, the normalized capacity of MUE and FUEs is 

calculated as follows: 
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In the subsequent subsections, optimization 

problem and the proposed solution is presented in the 

detail.  

B. Optimization Problem 

The objective of the optimization problem to 

allocate optimal power to the FBSs which maximize the 

sum capacity of the FUEs, while ensuring the minimum 

defined QoS requirements for MUE and FUEs. The 

optimization problem is defined as follows: 

 
Fig-2: Reinforcement Learning (RL) 
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The fundamental objective in (5) is to maximize 

the sum capacity of the FUEs while maintaining the 

minimum QoS for the MUE and FUEs as described in 

(5b) and (5c) where       and      are QoS threshold 

for FUEs and MUE respectively.  Another constraint, 

(5a) is to ensure the allocated power is below the 

maximum power. It is evident from the (2), (4) and (5) 

that optimization is a non-convex problem around 

densely populated femtocells. In fact, the interference 

terms in the denominator of (2) enforce that optimization 

problem stated in (5) as non-convex.  

C. RL based Proposed Solution 

The RL is a suitable ML technique for the 

environments or scenarios where single or multiple 

agents act to interact with environmental variables based 

on defined policy. Interaction of the agent results in the 

form of the feedback from the environment which is 

called reward and agents are updated accordingly. In the 

HetNets, FBS can be the agents that may interact with the 

environment and update their states accordingly. The 

overall process of the RL system is shown in Fig-2. 

The RL can be implemented through a Q-

Learning model which employee dynamic programming 

(Amiri et al., 2018). The Q-Learning function can be 

taken as an approximator which depends upon the state, 

  , and action,   , at any time instant  . The Q function 

can be approximated through the following equation 

 (     )     
 
* ,     (       )-+  ( )  
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According to the (Amiri et al., 2018), the (6) 

converges to a unique concave solution as     . The 

Algorithm 1, presents the simple Q-Learning scheme 

which is employed in this research paper. The parameter 

α used in the Q-Learning algorithm represents the rate of 

learning. 

The four fundamental parts of the Q-Learning 

algorithms are briefly described below: 

 

Algorithm 1: Q-Learning Algorithm  

Define states    and actions    
Initialize Q-Table arbitrarily, i.e.  (     ) 
for                        do 

 

Initialize    
for             do 

 select    from    
 apply    
 observe    
 new state       

 
update Q-Table  (     )   (     )   *     (    
  (       ) )   (     )+ 

          

end 
end 

 

1) Actions: Actions are a step taken by the agents to 

maximize the objective function. In our case, the 

transmitting power for each FBS is considered as the 

actions. The transmit power of the FBS can be selected in 

an equally likely manner from the equally spaced set of 

powers 

  [                ] ( )  

between      and       Therefore, the       can be 

defined as  

      
         
      

   

2) States: In RL, state,   , describes the current situation 

of the agent. In our case, the state of the agent, i.e. FBS, 

is defined on the basis of the location of the FBS with 

respect to the nearby MUE and MBS. Therefore, to 

define the state of the FBS, the distance from the MBS, 

    , and distance from the MUE,     , is defined as 

follows on the basis of the distance rings      and       

respectively: 

     ,             - ( )  

     ,             - ( )  

Based on the above-defined      and     , 

state,   , of     FBS at any time,  , is defined as follows:  

  
  ,         - (  )   

3) Q-Table: Based on the actions and states, a table is 

constructed that include all possible options of the actions 

and states where the actions are in columns and states in 

rows. This table is called Q-Table. The Q-Table may 

remain fix or vary according to change in the state of the 

FBS. 

4) Reward: The reward function is a vital part of the Q-

Learning technique. The accuracy of the algorithm 

depends upon the optimized reward function. There is not 

a qualitative method to drive the reward function. A 

reward function that maximizes the objective function 

can be proposed. In our case, the objective of the research 

is to maximize the sum capacity of the FUEs while 

maintaining the minimum defined QoS. The reward 

function is derived from the (5) and is given below: 

  
         

      ⏟      
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where       (            )
 
 and      

 (           )
 
 are just the constants used to represent 

(11) in a concise form.  

The reward function   
 is composed of two 

major parts   and   as shown in (11). In the first part,   

indicates that the reward is maximum when FUE and/or 

MUE capacities are higher. However, to give more 

weight to the MUE as the primary user, the capacity of 

MUE is powered by  ; where     . The second part,  , 

of the reward function ensures the QoS requirements 

where        and      defines minimum QoS 

requirements for the MUE and FUE respectively. The 

term   is the deviation of MUE and FUE from the 

threshold QoS requirements, therefore, it is subtracted 

from the capacity maximizing part,  , of the reward. A 

multiplier   is used to provide fairness to the MUE and 

FUEs as in the (Tefft and Kirsch, 2013). However, the 

value of the   is user dependent which may have value 

between 5-20. A constant value of the   is proven 

effective in the simulation. In our case, FBS acts as the 

agents and therefore each FBS runs the Algorithm 1 

individually. The proposed solution is n cooperative 

which is based on the multi-agent RL methodology as 

discussed by (Whitehead, 1991). According to the 

authors, agents in the RL scheme can share their 

knowledge and experience about the environment with 

the other agents (Whitehead, 1991). It is also evident 

from the literature that cooperation among the agents also 

reduce learning and search time (Busoniu et al., 2008; 

Whitehead, 1991). Therefore, in the proposed 

methodology, FBS shares Q-Table with other FBS in its 

vicinity. The approach for computing the new Q-Table 

from the shared Q-.Tables, is based on the methodology 

used by (Amiri et al., 2018). 

D. Simulation Setup: To simulate the proposed 

methodology, a system model composed of one MBS and 

  number of FBS is assumed. To reduce the complexity 

of the system model only one MUE and FUE is 

considered. However, in the future, more number 

ofMUEs and FUEs can be simulated for a more realistic 



Pakistan Journal of Science, 71 (4 Suppl.): 2019, Page 258-265 
ISSN: 2411-0930 

Asia Pacific International Conference on Emerging Engineering (APICEE) held in Rahim Yar Khan, Pakistan on November 09-10, 2019 

262 

environment. The MBS is located in the center of the cell 

FBS, FUE, and MUE may take any position in the cell. 

 

 
Fig-3: Simulation Model 

However, to simulate the high density,   FBS, 

each with single FUE, are considered around the single 

MUE in the first quadrant at random locations. The 

random locations are simulated to make the system model 

close to a realistic situation. The system model is shown 

in the Fig-3.  

To indicate the location of the FBS with respect 

to the distance from the MUE and MBS, three layers are 

used i.e.                    . However, in the 

future, a higher number of layers may be used to indicate 

a more precise location. The layer for MBS and MUE are 

indicated with green and red rings in the Fig-3. The state, 

  , of     FBS depends upon the distance from MUE and 

MBS as discussed in the last section. 

In the simulations, the path loss is computed 

using the Log-Distance model and two assumptions are 

made to support the high-density realistic models which 

are i) residential area (Hossain et al., 2012) and ii) 

indoor-outdoor propagation model for femtocells 

(Valcarce and Zhang, 2010). 

                   (
 

  
)  (  )  

          is Constant Path Loss  and   is Path loss 

Exponent. 

The parameters of the model are set as per the 

path loss model of the residential area in which    
                      (Hossain et al., 2012). 

However, in the case of the indoor-outdoor propagation, 

which is suitable for simulations of the femtocells, path 

loss can be written as follows (Valcarce and Zhang, 

2010):  

            (  )  

      

                                               
                                      
                         

Using the (6), (7) and Table-II proposed by the 

Valcarce & Zhang, 2010,     and     can be written as 

follows: 

                   
  (   )  

                (
 

 
)  (   )  

Where   is operating frequency in G    Rest of 

the simulation parameters are summarized in Table-2. 

RESULTS AND DISCUSSION 

In this section results of the simulation of the 

proposed scheme is presented and compared with the 

other state of the art solutions (Amiri et al., 2018; Tefft 

and Kirsch, 2013). The results are compared in terms of 

the MUE capacity as function of FBS number, capacity 

of FUEs for every number of FBS and sum capacity of 

the FUEs as function of FBS number. 

1) MUE Capacity: The comparison of the MUE capacity 

for the proposed solution and results presented by (Amiri 

et al., 2018; Tefft and Kirsch, 2013) are shown in Fig-4. 

The simulation results show that the proposed solution 

significantly increased the capacity of the MUE in highly 

dense HetNets. The results of the proposed solution 

followed the trend of the results reported by Amiri et al., 

2018 i.e. decrease in the MUE capacity 

 

Table- 2: Simulation Parameters. 

 

Parameter  Value 

No. of MBS 1 

No. of FBS 15 

No. of MUEs  1 

No. of FUEs per FBS 1 

Radius of MBS  1000m 

Radius of FBS  10m 

     50 Watts 

     -20dBm to 25dBm 

       31 

     and      1 b/s/Hz 

Learning Rate,    0.5 

Discount Factor,    0.9 

Number of Iterations  50000 

Operating Frequency,    2.5GHz 

Path Loss Model  Residential Area and Indoor-

Outdoor Propagation  
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Fig-4: MUE Capacity,         

 

 
Fig-5: FUEs Capacity,       

 

 
Fig-6: Minimum FUE Capacity,         

 
Fig-7: Maximum FUE Capacity,         

 
Fig-8: Sum Capacity of FUEs  

 

 with an increase in FBS number. However, for 

the higher number of FBS, it still remains higher the 

MUE capacity reported by (Tefft and Kirsch, 2013) and 

never falls below the QoS threshold. 

2) FUEs Capacity: Comparison of the FUEs capacity 

using the proposed solution and the results presented by 

(Amiri et al., 2018; Tefft and Kirsch, 2013) are shown in 

Fig-5. The capacity of the FUEs, using the proposed 

solution, is significantly higher than both of the state of 

the art solutions. Using the proposed solution, FUEs 

capacity never falls below the QoS threshold whereas for 

both (Amiri et al., 2018; Tefft and Kirsch, 2013), the 

capacity of the FUEs decreases with an increase in FBS 

number and is almost zero after 14 FBS. A similar trend 

can also be observed for the minimum and maximum 

FUEs capacities shown in Fig-6 and Fig-7 respectively.  

3) FUEs Sum Capacity: Like the FUEs capacity, the 

FUEs sum capacity also shows a remarkable increase 

with the increase in FBS as compared to the results of 
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(Amiri et al., 2018; Tefft and Kirsch, 2013) as shown in 

Fig-8. The proposed solution followed the rising trend of 

the result presented by (Amiri et al., 2018). However, 

sum capacity value for each FBS is significantly higher 

than that of (Amiri et al., 2018). The almost linear 

increase in the sum capacity of FUEs indicates that SINR 

of FUEs got significantly improved using the proposed 

solution. 

Conclusion: In this paper a ML-based technique, Q-

Learning is used for efficient power allocation to the FBS 

in highly dense HetNets. In high cross tier and co-tier 

interference scenarios, the power allocation optimization 

problem has a non-convex solution. However, the 

proposed ML technique solved the optimization problem 

successfully while maintaining the minimum QoS 

requirements for the MUE and FUEs. The simulation 

results show that despite the capacity of the MUE 

decreases with an increase in FBS number but a higher 

number of FBS can be added in the system while 

maintaining the minimum QoS for MUE. Similarly, a 

remarkable increase in the sum capacity of the FUEs is 

observed with the increase in FBS number which shows 

that the proposed solution effectively optimizes the FBS 

power to reduce the interference and increases the SINR 

of FUEs. In the future, more complex scenarios will be 

simulated keeping in view the other performance 

measuring parameters.  
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