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ABSTRACT: Small cells based ultradense heterogeneous networks (HetNets) are being considered as the
one the promising solution for increased coverage and capacity in the 5G cellular networks. However, in the
multi-tiered architecture, co-tier and cross tier interference are a performance-limiting factor. The interference
can be effectively handled through efficient resource allocation techniques in either a cooperative or distributive
manner. However, the complexity of such resource allocation schemes linearly increases with the density of the
HetNets due to unplanned deployment and dynamic behavior of small cells. The HetNets can be implemented
only through an adaptive and self-organizing algorithm that can adapt to the dynamic conditions. In this
research paper, a machine learning (ML) based adaptive resource allocation scheme is proposed for the
femtocell based dense HetNets. The Q-Learning based scheme consider each femtocell base station (FBS) as
the agent of the network and model the HetNets as multi-agent network to allocate optimal power to the FBS to
maximize the capacity of the femtocell user equipment (FUEs) an macrocell user equipment (MUEs) while
considering the quality of service (QoS) requirements. The proposed cooperative Q-Learning scheme increases
the sum capacity of the FUEs by seven-folds and always ensures the minimum QoS requirements as compared
to the prior work. Furthermore, the proposed solution also increased the number of supported femtocells by
two-fold in comparison to the state of the art solution.

Keywords: Machine Learning (ML), Heterogeneous networks (HetNets), Q-Learning, Femtocells

INTRODUCTION

The exponential growth in mobile users (UES) in
the last few years cannot be handled with traditional
cellular networks. It is expected that by 2020, 50 billion
users will be connected to the cellular network. The next
generation of the cellular network i.e. 5th Generation
(5G) is expected to meet the capacity and other quality of
service (QoS) requirements like higher data rate,
throughput and zero latency (Agiwal et al., 2016;
Akpakwu et al., 2018; Parvez et al., 2018). However,
meeting the fundamental requirements of the 5G is not an
easy task. Many solutions have been proposed in the
literature to enhance the capacity and other QoS
requirements which include massive multiple inputs and
multiple outputs (MIMO), millimeter-wave (mmW)
communication,  non-orthogonal — multiple  access
(NOMA) and heterogeneous networks (HetNets) (Gupta
and Jha, 2015). An overview of the 5G cellular network
is presented in Fig-1. The HetNets are considered as the
viable solution to meet the coverage and capacity
requirements in 5G cellular networks, however, the
deployment of the small cells in a multi-tiered
architecture to form HetNets results in co-tier and cross
tier inference. To effectively deploy the HetNets to
increase capacity and coverage, the interference caused

by the unplanned and dense deployment of the small cells
has to be resolved (Gupta and Jha, 2015; Zhang et al.,
2015). In this paper, a cooperative power control scheme
is proposed for the interference mitigation and enhancing
and sum capacity of the femtocells. The proposed
algorithm is based on the reinforcement learning (RL)
scheme.

HetNets are one of the solutions proposed in the
literature to increase the coverage and capacity of the
existing and future cellular networks. The idea is to
deploy low-powered and small-ranged access points or
base stations connected to the backhaul through optic
fiber. These small ranged cells comprised of the low
powered access point or base station are called small
cells. Based on the transmission power and deployment
scenario, small cells can be classified as the picocells,
microcells, and femtocells. The detailed classification of
small cells is discussed by (Gupta and Jha, 2015). The
coverage radius of femtocells is approximately 200m
which is very less as compared to macrocell which have
coverage radius of 10-40Km (Gupta and Jha, 2015;
Tseng et al, 2015). The comparison of different
parameters of the femtocells and macrocell is presented
in Table-1. Femtocells are connected to service providers
through optic fiber. The macrocell and femtocells operate
in the same frequency band and therefore macrocell users
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Fig-1: Overview of 5G Cellular Networks (Gupta and Jha, 2015)

Table-1: Comparison of Femtocell and Macro Cell in
5G Cellular HetNets (Gupta & Jha, 2015).

Femtocell Macrocell
Bandwidth (MHz) 20 60-75
Output power (W) 0.250 40-100
Cell Radius (m) 200 10-40km
No. of Users 32-100 1000+
Indoor/ Outdoor Indoor/ Outdoor  Indoor/ Outdoor
Backhaul Microwave/ Fiber Microwave/ Fiber

(MUEs) become primary users and femtocell
users (FUES) are considered as the secondary users which
sense the spectrum holes and transmit intelligently
(Sanchez et al., 2016). However, in the densely populated
areas like an urban environment, the QoS is effected by
the co-tier and cross tier interference. Interference can be
mitigated in several ways however an adaptive power
control is considered as an effective approach (Kurda et
al., 2014; Yang et al., 2018). In the last few years, many
interference mitigation and QoS improvement schemes
have been proposed in the literature, however, most of
such schemes do not consider the uncertainty for the
deployment of femtocells in the macrocell and a self-
organizing the capability of the femtocells to adapt to the
dynamic conditions. Machine learning (ML), which has
recently got the attention of the researcher and scientists
to provide cognition to the different types of systems, has
also found many applications in cellular networks. RL,
which is a type of ML is developed to optimize the
unknown system by interacting with it. RL is a perfect
solution in situations where systems are unknown and
conditions are dynamic. Unlike the many other ML
techniques, RL does not require training prior to the
application (Whitehead, 1991). Due to this property, RL
is being applied in the communication networks
especially in the areas like resource allocation problems,

dynamic spectrum access and other distributed nature
problems (Bin et al., 2014; Feng et al., 2009; Galindo-
Serrano and Giupponi, 2010; Tefft and Kirsch, 2013). In
this paper, the RL based scheme is proposed for power
allocation to the femtocells to increase the sum capacity
of the femtocells.

Related Work: To solve the optimization problem of
resource allocation in HetNets, a proper reward function
in Q-learning is essential. The reward function can be
selected or proposed based on the underlying
optimization problem. To optimize the power allocation
problem in HetNets, several reward functions have been
proposed in the literature (Amiri et al., 2018; Bin et al.,
2014; Saad et al., 2012; Tefft and Kirsch, 2013). The
power allocation problem can be solved either
cooperatively (Bin et al., 2014; Galindo-Serrano and
Giupponi, 2010) or in the distributive manner (Saad et
al., 2012; Tefft and Kirsch, 2013). Most of these schemes
improve either QoS or Capacity of MUEs or FUEs and
neglects the other parameters. The Round Robin
approach has been used by (Bin et al., 2014), in order to
improve the throughput of cell edge users while
maintaining the fairness between FUEs and MUEs. (Saad
et al., 2012), presented the work based on the cooperative
Q-learning technique to maximize the sum capacity and
maintain the threshold for the FUEs and MUEs
respectively. However, QoS for the FUEs are ignored by
both Bin et al., 2014 and Saad et al., 2012. Furthermore,
the reward functions presented in the literature are not
designed to handle the ultradense and unplanned
networks. (Galindo-Serrano and Giupponi, 2010; Saad et
al., 2012; Bin et al., 2014). However, (Tefft and Kirsch,
2013), proposed a Q-Learning based solution to fairly
allocate power to FBS by considering the proximity of
FUEs and MUEs. However, this proposed solution could
not provide the required QoS to the FUEs. Furthermore,
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the details of the cooperation among the FUEs are also
kept hidden. In this paper, we have proposed a Q-
Learning based solution to allocate optimal power to the
FBS to increase the sum capacity of the FUEs while
ensuring the minimum QoS requirements. The proposed
solution successfully handled the limitations of the prior
works.

MATERIALS AND METHODS

A. System Model: In this research, a single cell of a 5G
cellular HetNets comprised of a single macro base station
(MBS) and M femtocell base stations (FBSs) is
considered. Initially, to keep the system model simple,
only one femtocell user equipment (FUE) is assumed for
each FBS. The objective of the research is to allocate
optimal power in the downlink of a dense HetNets where
co-tier and cross tier interference are the performance-
limiting factor. Although only one MUE and FUE for
each FBS is assumed in this paper, the proposed solution
can be implemented for the higher number of MUEs and
FUEs. The signal received by the MUE receiver include
cross tier interference and some thermal noise. Therefore,
the signal-to-interference-noise-ratio (SINR) at the MUE
and FUE is calculated as follows:

Pyps h
SINRyys = MBS M

- #(1)

i Prgs; hpy + 02

where

Pygs = Transmit Power of the MBS (Watts)
Ppgs; = Transmit Power of the it" FBS (Watts)
hyy = Channel gain from MBS to MUE

hrpy = Channel gain from FBS to the MUE

6? = Variance of AWGN

Prps; hep

M
2
Pyps hyr + Z Prgs; hpp;j + 0
j=1,j#i

SINRFUEi =

where
Ppgs; = Transmit Power of the it" FBS (Watts)
hpr = Channel gain from i*"* FBS to i** FUE
Pygs = Transmit Power of the MBS (Watts)
hyr = Channel gain from MBS to it" FUE
hpr;; = Channel gain from i" FUE to j* FUE

Following the assumptions made by (Feng et al.,
2009; Tefft and Kirsch, 2013), we also assumed that
channel parameters are known by the FBS. As the FBSs
are connected to the backhaul through optic fiber,
therefore channel parameters can be easily shared.
Finally, the normalized capacity of MUE and FUEs is
calculated as follows:

Cyue = logo(1+ SINRyyp)#(3)

Cryg; = logy (1+ SINRpyg,)#(4)
Where
i= 123, ... , M

#(2)

In the subsequent subsections, optimization
problem and the proposed solution is presented in the
detail.

B. Optimization Problem

The objective of the optimization problem to
allocate optimal power to the FBSs which maximize the
sum capacity of the FUEs, while ensuring the minimum
defined QoS requirements for MUE and FUEs. The
optimization problem is defined as follows:

¥ Environment

action a, reward ry stafe s;

Agent ——

a3

Fig-2: Reinforcement Learning (RL)
M

max z Crugy #(5)
P k=1

subject to P, < Pouni=1,.. M#(5a)

CFUEi > EFUEi'i = 1, ,M #(Sb)

The fundamental objective in (5) is to maximize
the sum capacity of the FUEs while maintaining the
minimum QoS for the MUE and FUEs as described in
(5b) and (5¢c) where &gyp, and &yyp are QoS threshold
for FUEs and MUE respectively. Another constraint,
(5a) is to ensure the allocated power is below the
maximum power. It is evident from the (2), (4) and (5)
that optimization is a non-convex problem around
densely populated femtocells. In fact, the interference
terms in the denominator of (2) enforce that optimization
problem stated in (5) as non-convex.

C. RL based Proposed Solution

The RL is a suitable ML technique for the
environments or scenarios where single or multiple
agents act to interact with environmental variables based
on defined policy. Interaction of the agent results in the
form of the feedback from the environment which is
called reward and agents are updated accordingly. In the
HetNets, FBS can be the agents that may interact with the
environment and update their states accordingly. The
overall process of the RL system is shown in Fig-2.

The RL can be implemented through a Q-
Learning model which employee dynamic programming
(Amiri et al., 2018). The Q-Learning function can be
taken as an approximator which depends upon the state,
s¢, and action, a;, at any time instant t. The Q function
can be approximated through the following equation

Q(spap) = me{E[Rt +¥Q(st41,a)]} #(6)

where
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R; = Reward Function at time t
y = Discount Factor (0 <y <1)

According to the (Amiri et al., 2018), the (6)
converges to a unique concave solution as — o . The
Algorithm 1, presents the simple Q-Learning scheme
which is employed in this research paper. The parameter
a used in the Q-Learning algorithm represents the rate of
learning.

The four fundamental parts of the Q-Learning
algorithms are briefly described below:

Algorithm 1: Q-Learning Algorithm

Define states S; and actions A4,

Initialize Q-Table arbitrarily, i.e. Q(s;, a;)
for Iterations < Niierations dO
Initialize a;

for Step < Ngep, do

select a, from 4,

apply a;

observe R,

new state sy,

update Q-Table Q(s;, a;) = Q(sy, ar) + a{max, (R, +
YQ(ses1,a:) ) — Q(sp, )}

St < St41

end

end

1) Actions: Actions are a step taken by the agents to
maximize the objective function. In our case, the
transmitting power for each FBS is considered as the
actions. The transmit power of the FBS can be selected in
an equally likely manner from the equally spaced set of
powers

A= [al, Ay, cen e , aNPoweT]#(7)
between P,,;, and PB,,,. Therefore, the Step, can be
defined as
Pmax - Pmin
StepA NPower
2) States: In RL, state, s;, describes the current situation
of the agent. In our case, the state of the agent, i.e. FBS,
is defined on the basis of the location of the FBS with
respect to the nearby MUE and MBS. Therefore, to
define the state of the FBS, the distance from the MBS,
Dyps, and distance from the MUE, Dy, is defined as
follows on the basis of the distance rings Nygs and Ny yg
respectively:

DMBS = [0, 1,2, ...... INMBS]#(S)

Dyye = [0,1,2, ... ..., Nyugl#(9)

Based on the above-defined Dyps and Dyyg,

state, s, of i" FBS at any time, t, is defined as follows:

Sti = [Dups, Dyye]#(10)

3) Q-Table: Based on the actions and states, a table is
constructed that include all possible options of the actions
and states where the actions are in columns and states in
rows. This table is called Q-Table. The Q-Table may

remain fix or vary according to change in the state of the
FBS.

4) Reward: The reward function is a vital part of the Q-
Learning technique. The accuracy of the algorithm
depends upon the optimized reward function. There is not
a qualitative method to drive the reward function. A
reward function that maximizes the objective function
can be proposed. In our case, the objective of the research
is to maximize the sum capacity of the FUEs while
maintaining the minimum defined QoS. The reward
function is derived from the (5) and is given below:
R =T Ciyg,Crup, — T~ (Buug + Brug) #(11)
X ) Y

where Byyp = (CMUEt - fMUE) and Bryg =
(Crye, — € FUE)Z are just the constants used to represent
(11) in a concise form.

The reward function Rfis composed of two
major parts X and Y as shown in (11). In the first part, X
indicates that the reward is maximum when FUE and/or
MUE capacities are higher. However, to give more
weight to the MUE as the primary user, the capacity of
MUE is powered by n; where n = 2. The second part, Y,
of the reward function ensures the QoS requirements
where  &yur and &ppp defines minimum QoS
requirements for the MUE and FUE respectively. The
term Y is the deviation of MUE and FUE from the
threshold QoS requirements, therefore, it is subtracted
from the capacity maximizing part, X, of the reward. A
multiplier 7 is used to provide fairness to the MUE and
FUEs as in the (Tefft and Kirsch, 2013). However, the
value of the T is user dependent which may have value
between 5-20. A constant value of the T is proven
effective in the simulation. In our case, FBS acts as the
agents and therefore each FBS runs the Algorithm 1
individually. The proposed solution is n cooperative
which is based on the multi-agent RL methodology as
discussed by (Whitehead, 1991). According to the
authors, agents in the RL scheme can share their
knowledge and experience about the environment with
the other agents (Whitehead, 1991). It is also evident
from the literature that cooperation among the agents also
reduce learning and search time (Busoniu et al., 2008;
Whitehead, 1991). Therefore, in the proposed
methodology, FBS shares Q-Table with other FBS in its
vicinity. The approach for computing the new Q-Table
from the shared Q-.Tables, is based on the methodology
used by (Amiri et al., 2018).

D. Simulation Setup: To simulate the proposed
methodology, a system model composed of one MBS and
M number of FBS is assumed. To reduce the complexity
of the system model only one MUE and FUE is
considered. However, in the future, more number
ofMUEs and FUEs can be simulated for a more realistic
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environment. The MBS is located in the center of the cell
FBS, FUE, and MUE may take any position in the cell.
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Fig-3: Simulation Model

However, to simulate the high density, M FBS,
each with single FUE, are considered around the single
MUE in the first quadrant at random locations. The
random locations are simulated to make the system model
close to a realistic situation. The system model is shown
in the Fig-3.

To indicate the location of the FBS with respect
to the distance from the MUE and MBS, three layers are
used i.e. Nygs = Nyyg = N = 3. However, in the
future, a higher number of layers may be used to indicate
a more precise location. The layer for MBS and MUE are
indicated with green and red rings in the Fig-3. The state,
s¢, of it" FBS depends upon the distance from MUE and
MBS as discussed in the last section.

In the simulations, the path loss is computed
using the Log-Distance model and two assumptions are
made to support the high-density realistic models which
are i) residential area (Hossain et al., 2012) and ii)
indoor-outdoor  propagation model for femtocells
(Valcarce and Zhang, 2010).

d
PL = PL, + 10nlog,, (d_) #(12)
o

where PL, is Constant Path Loss and n is Path loss
Exponent.

The parameters of the model are set as per the
path loss model of the residential area in which d, =
5,n=4 and PL, = 62.3dB (Hossain et al., 2012).
However, in the case of the indoor-outdoor propagation,
which is suitable for simulations of the femtocells, path
loss can be written as follows (Valcarce and Zhang,
2010):

PL = PL; + PLy #(13)
where
PL; = Attenuation from the transmitter till the
outer wall of the house
PLy = Outdoor attenuation

Using the (6), (7) and Table-1l proposed by the
Valcarce & Zhang, 2010, PL; and PL, can be written as
follows:

PL; = 6.1 + 10.6f — 1.8 f2#(13a)

d
PLy = 62.3 + 32logy, (g) #(13b)

Where f is operating frequency in GHz. Rest of
the simulation parameters are summarized in Table-2.

RESULTS AND DISCUSSION

In this section results of the simulation of the
proposed scheme is presented and compared with the
other state of the art solutions (Amiri et al., 2018; Tefft
and Kirsch, 2013). The results are compared in terms of
the MUE capacity as function of FBS number, capacity
of FUEs for every number of FBS and sum capacity of
the FUES as function of FBS number.

1) MUE Capacity: The comparison of the MUE capacity
for the proposed solution and results presented by (Amiri
et al., 2018; Tefft and Kirsch, 2013) are shown in Fig-4.
The simulation results show that the proposed solution
significantly increased the capacity of the MUE in highly
dense HetNets. The results of the proposed solution
followed the trend of the results reported by Amiri et al.,
2018 i.e. decrease in the MUE capacity

Table- 2: Simulation Parameters.

Parameter Value
No. of MBS 1

No. of FBS 15
No. of MUEs 1

No. of FUEs per FBS 1

Radius of MBS 1000m

Radius of FBS 10m

Pygs 50 Watts

Prps -20dBm to 25dBm
NPower 31

Emue and Epyg 1 b/s/Hz

Learning Rate, a 0.5

Discount Factor, y 0.9

Number of Iterations 50000

Operating Frequency, f 2.5GHz

Path Loss Model Residential Area and Indoor-
Outdoor Propagation
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MUE Capacity as Function of FBS Number
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with an increase in FBS number. However, for
the higher number of FBS, it still remains higher the
MUE capacity reported by (Tefft and Kirsch, 2013) and
never falls below the QoS threshold.

2) FUEs Capacity: Comparison of the FUEs capacity
using the proposed solution and the results presented by
(Amiri et al., 2018; Tefft and Kirsch, 2013) are shown in
Fig-5. The capacity of the FUEs, using the proposed
solution, is significantly higher than both of the state of
the art solutions. Using the proposed solution, FUEs
capacity never falls below the QoS threshold whereas for
both (Amiri et al., 2018; Tefft and Kirsch, 2013), the
capacity of the FUEs decreases with an increase in FBS
number and is almost zero after 14 FBS. A similar trend
can also be observed for the minimum and maximum
FUEs capacities shown in Fig-6 and Fig-7 respectively.

3) FUEs Sum Capacity: Like the FUEs capacity, the
FUEs sum capacity also shows a remarkable increase
with the increase in FBS as compared to the results of
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(Amiri et al., 2018; Tefft and Kirsch, 2013) as shown in
Fig-8. The proposed solution followed the rising trend of
the result presented by (Amiri et al., 2018). However,
sum capacity value for each FBS is significantly higher
than that of (Amiri et al., 2018). The almost linear
increase in the sum capacity of FUEs indicates that SINR
of FUEs got significantly improved using the proposed
solution.

Conclusion: In this paper a ML-based technique, Q-
Learning is used for efficient power allocation to the FBS
in highly dense HetNets. In high cross tier and co-tier
interference scenarios, the power allocation optimization
problem has a non-convex solution. However, the
proposed ML technique solved the optimization problem
successfully while maintaining the minimum QoS
requirements for the MUE and FUEs. The simulation
results show that despite the capacity of the MUE
decreases with an increase in FBS number but a higher
number of FBS can be added in the system while
maintaining the minimum QoS for MUE. Similarly, a
remarkable increase in the sum capacity of the FUEs is
observed with the increase in FBS number which shows
that the proposed solution effectively optimizes the FBS
power to reduce the interference and increases the SINR
of FUEs. In the future, more complex scenarios will be
simulated keeping in view the other performance
measuring parameters.
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