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ABSTRACT: Water quality monitoring is one of crucial activity for sustainable water resource
management and global environmental protection. The conventional assessment techniques mostly rely
on the threshold value based analysis of physicochemical data. Such methods may fail to capture
complex and nonlinear relationships in the water quality parameters. In our study, a machine learning—
based framework has proposed for classification of water quality by using physicochemical
parameters. The parameters in dataset includes pH, hardness, solids, conductivity, organic carbon, and
turbidity. The proposed methodology for this work includes an enhance data preprocessing strategy for
imputation of adaptive missing-values using Mean, KNN and Iterative (MICE). Then evaluation of
multiple ML models, logistic regression, support vector machines, random forests, and gradient
boosting were performed for optimization of model. The stacking ensemble model combining
heterogeneous base learners is developed for the enhancement of model classification and its
performance. The efficiency of Model is assessed on evaluation metrics, including accuracies,
precision, recall, F1-score, and ROC curves. The results demonstrated an enhanced performance for
ensemble-based models compared to individual classifiers. Moreover, explainable artificial
intelligence based on Shapley Additive Explanations, known as SHAP, have been adopted to interpret
model’s prediction. The results show the effectiveness of ensemble machine learning and explainable
Al for robust and interpretable water quality assessment. This can be useful offering for a data-driven

based decision-support framework for environmental monitoring applications.
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INTRODUCTION

Water quality have an important role and
significance in  managing ecological balance and
protecting the public health. The efficient monitoring of
the water quality supports a sustainable water resource
management. The water quality can be degraded due to
natural processes and anthropogenic activities by
industrial discharge, agricultural runoff, and urbanization.
This imposes a significant risk to aquatic ecosystems and
as well as for human societies. For the effective
environment management, it is very crucial to continuous
monitor and access the water quality for formulation of
essential policy implication [1].

Generally, in conventional water quality
assessment systems physicochemical parameter, some
thresholds and manual laboratory analysis were
performed. These systems have only statistical
significance. Because often predications generated by
such systems fail to capture complex and nonlinear
interactions within the dataset features. Also these types
of techniques are much time taking and use considerable
resources. So their usability becomes limited for real-time
predictive analysis. For larger scale environmental data,
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some modern data-driven approaches provide alternative
and efficient solution which can be made scalable for
monitoring of water quality [2].

In recent some research machine learning
techniques have been applied for the environmental
monitoring applications. Many researchers have reported
water quality prediction and classification systems based
on machine learning models. Some models like support
vector machines, and gradient boosting algorithms have
shown good performance as compared to statistical
methods. Because ML methods can more effectively
model the nonlinear relationships within
multidimensional data. Some research studies focused on
single-model implementation that often neglect issues
like missing data handling and class imbalance. To
improve robustness and practical applicability of ML
based water quality assessment systems, such limitations
needs to be reduced [3].

The lack of transparency in model predictions is
also one of the major hurdle to use machine learning in
environmental sciences. Despite the fact that many of
Black-box models provide some predictions but they are
limited for providing insights related to the underlying
factors that drives the classification. For most of the
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environmental decision-making systems, understanding
the influence of corresponding physicochemical
parameters is very important for the development of
targeted mitigation strategies. As a result, explainable
artificial intelligence (XAI) approaches have drawn
interest as a technique to bridge the interpretability and
predictive performance gaps [4], [5].

This study proposes an ensemble machine
learning based framework for the water quality
classification by using physicochemical parameters. The
methodology presented in this study employs advanced
data preprocessing techniques to enhance robustness of
the model. For the preprocessing multiple data imputation
techniques were used for handling of missing values
which also include adaptive missing-value imputation.
Further imbalance-aware model training, has also
improve the training efficiency. Various machine
learning models were systematically evaluated to develop
a stacking ensemble classifier that combines the strengths
of heterogeneous learners. Furthermore, explainable Al
techniques based on SHAP have been used to interpret
model’s predictions as well as to identify the most
important and influential water quality parameters in the
dataset.

LITERATURE REVIEW

Recently the water quality assessment systems
have shifted from traditional statistical methods to
advanced Al and loT based real-time monitoring and
control systems. Traditional methods like WQI provide
useful frameworks but they usually lack the ability to
model complex and nonlinear relationships. These
systems cannot offer predictive foresights. With the
advancement in machine learning and deep learning
based research now modern techniques like LSTM and
XGBoost are being in use to accurately predict and
forecast pollution trends. The integration of loT and
deploying wireless sensor networks have further
enhanced their real world applicability [3], [6].

The machine learning (ML) techniques have
been increasingly adopted for water quality prediction
and classification tasks [1]. For example, Patel et al. [7]
reported the use of multiple machine learning based
classifiers such as SVM, decision trees, random forests
and gradient boosting, for predicting of the water quality
classes. For handling of class imbalance, Synthetic
Minority Oversampling Technique was employed. For
their study Random Forest and Gradient Boosting models
have shown the high classification accuracies [7]. In
another article, Akhlaq et al. [8] studied the effectiveness
of supervised machine learning models for prediction of
water quality in glacial lakes and rivers. They
implemented the approach using Decision trees, KNN,
MLP, SVM, and random forests classifiers. Support
Vector Machine and Random Forest models have shown
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best performance as compared to decision tree and neural
network based models [8].

Many researchers recently reported the superior
performance of ensemble learning techniques over single
machine learning models for similar dataset. Nermeen et
al. [9] introduced an ensemble learning framework,
EWAIS by combining various  classifiers. They
used Extra Trees Classifier, KNNs and, AdaBoost based
stacked ensemble methodology. High accuracy of 0.89
and an Fl-score of 0.85 were achieved. Their
methodology utilized SHAP and LIME explainers to
show the resilience of ensemble technique and to reveal
importance of underlying features.

Elshewey et al. [10] conducted an empirical
study using a stacking ensemble random forest, extra
trees, and XGBoost based learners. The logistic
regression meta-learner was developed for water
potability classification. The stacking ensemble technique
have shown an improved performance accuracy of
approximately 69.5 % and F1-score ~70.2 % compared to
standalone methods. The results indicated the potential of
ensembles have very good even with moderate dataset
quality [10].

Even though ensemble approaches can increase
prediction accuracy. The addressing of missing data still
has been major issue in applied water quality modeling.
Makumbura et al. [11] reported explainable Al
techniques e.g. SHAP, along with ML models. They have
shown improved predictive performance and also
elucidates the contribution of individual parameters to
enhance an interpretable environmental analysis. Li et al.
[12] also reported SHAP based analysis with an
ensemble learning model for water quality prediction.
They showed the use of explainable Al helped to identify
key predictors like turbidity and rainfall.

These research efforts have indicated a growing
recognition and importance of explainability in water
quality monitoring models.

METHODOLOGY

This research proposes multi-stage machine
learning framework for the water quality classification
using a public dataset. Proposed methodology present to
have five main stages, e.g. data acquisition, data
preprocessing and imputation, feature scaling and
selection, model trainings and explainability analysis.
The figure 1 shows a proposed workflow.

Unlike existing studies based on a single
preprocessing and modeling strategy, this framework
presented multiple imputation techniques integrated with
explainable Al and stacked ensemble modelling.

Dataset Description: The publically available Water
Quality Dataset were downloaded from Kaggle. This
dataset contains physicochemical measurements related
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to 3276 water samples. The dataset contains many
characteristic attributes such as pH values of water
samples, hardness, amount of solids in sample,
chloramines, sulfate concentration, conductivity values,
organic carbon, trihalomethanes, and turbidity. This also
includes with a binary class prediction variable to
indicate the water quality status, ‘1’ for safe /good water
quality ‘0’ for Poor water quality.

First of all, the shape and distribution of data
were visualized and to see the correct uploading of data
in Colab. Figure 2 shows the class distribution of water
quality. It indicates that there are more records for ‘1’
against for safe /good water quality as compared to ‘0’
for Poor water quality. This distribution is fair for model
training.

Methodology Framework Diagram
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Figure 1: Methodology Framework Diagram of proposed workflow

Class Distribution of Water Quality

Data Preprocessing: The isnull()function was applied on
the dataset to see null values against various features. The
table 1 shows the null values in records against each
features. The features ph, Sulfate and Trihalomethanes
have several missing values/ null records.

Feature Null Records
ph 491
Sulfate 781
Trihalomethanes 162
Total 1434

0 1
Potability

Figure 2: Dataset class distribution
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This reflects a real-world data collection
challenges and motivation to use the robust imputation
strategies. To handle missing data efficiently, three
imputation strategies are initially evaluated:
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. Mean Imputation: A baseline approach where
missing values are replaced with an
approximated value of the feature’s mean.

. K-Nearest Neighbor (KNN) Imputation:

Missing values are estimated based on feature
similarity among nearest neighbors.

. Iterative Imputation (MICE): A multivariate
imputation approach that models each feature
with missing using a sophisticated technique,
values is generated as a function of other
features.

Each imputation method is then evaluated by
using a baseline Random Forest classifier. Then
comparative performance analysis was performed to
select the best-performing imputation strategy for
subsequent experiments.

After the imputation process, feature scaling was
performed to standardize all numerical features using z-
score normalization as defined by the Eq 1.

x'==F €

where p and o denotes the mean value and value of

standard deviation of each feature, respectively.

Model Training: For this study three widely used
machine learning classifiers are employed, e.g. Support
Vector Machine , Random Forest, and Gradient Boosting
(XGBoost). The underlying hyperparameters of each
model have been optimized using a grid search with
cross-validation.

Table 1: Performance metrics of our applied models

In this architectural design, a stacked ensemble
model is created to take benefit of the complementary
strengths of individual classifiers. The stacked ensemble
improves generalization by combining heterogeneous
decision boundaries. First the base learners consist of
SVM, Random Forest, and XGBoost models. Then a
logistic regression based model is used as the meta-
learner that have been trained on the probabilistic outputs
of the base classifiers.

To enhance the interpretability of predictions,
Shapley Additive explanations (SHAP) were used on our
best-performing model. This quantifies the participation
of features to individual predictions and overall model
behavior. This also indicates the most influential water
quality parameters for model decisions.

All experiments for this study were conducted
using Google Colab using Python. Key libraries include
NumPy, Pandas, Scikit-learn, XGBoost, and SHAP.

RESULTS AND DISCUSSION

Model performance was evaluated by using the
respective results of accuracies, precision, recall, and F1-
scores. A train—test splitting was applied to preserve the
class distribution. Cross-validation was also applied
during hyperparameter tuning to reduce overfitting.

Performance of Individual Machine Learning Models:
After performing the suitable imputation, the
performance of each model were evaluated. The Table 1
shows the performance of our applied models:

Model Accuracy Precision Recall F1-score
KNN 0.6605 0.5493 0.3603 0.5291
Logistic Regression 0.6684 0 0 0
Random Forest 0.7102 0.6992 0.3681 0.5199
SVM 0.7284 0.6669 0.3759 0.5201
XGBoost 0.7387 0.7916 0.4177 0.5202
Stacking Ensemble 0.7496 0.7312 0.4099 0.5597

Overall, XGBoost and Stacking Ensemble
achieved the high performance accuracy as well as F1-
score among individual models. This show the benefiting
from its gradient-based optimization and Stacking
Ensemble for handling of complex nonlinear interactions.
The SVM also demonstrated competitive performance
with  strong robustness. While KNN  showed
comparatively lower recall due to sensitivity to class
overlap in the dataset. These results are consistent with
recent studies reporting the effectiveness of tree-based
ensemble models for water quality classification tasks.

Feature Importance and Explainable Al (XAl)
Analysis: The features correlation in dataset is very
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important for establishing effective classification as well
as to visualize the importance of each feature in decision
making. Figure 3 shows a Pearson feature correlation
matrix that depicts pairwise linear relationships among
the variables in a dataset to highlight the strength and
direction of these correlations.

The color scale represents correlation
coefficients ranging from —1 to +1. The warmer colors
represent stronger positive correlations. The cool colors
indicate weak or negligible correlations. The attributes
such as solids, conductivity, sulfate, and hardness have
shown a mild positive correlation with a warmer blue
color around the diagonal at top left corner. This is effect
is due to joint association of dissolved minerals content in
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water. This also reflects that water quality classification
depends more on nonlinear interactions among various
parameters as compared to any of single dominant
variable.

To enhance model’s interpretability, explainable
artificial intelligence (XAI) technique were employed
using Shapley Additive exPlanations (SHAP). SHAP-

based explainability analysis was performed on the best-
performing model to interpret feature contributions. The
SHAP results have shown that sulfate concentration and
pH are the most influential features affecting water
quality classification. Figure 4 shows a SHAP value
indicating impact on model output.
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Figure 3: Feature Correlation Matrix
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Figure 4:SHAP summary plot illustrating the features importance
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Positive SHAP values presented features that
increased the probability of a sample being classified as
potable. The negative values show that parameters are
linked with some degraded water quality. These findings
have shown the validity of our framework are well
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Hardness

Solids
Conductivity
Turbidity
Organic_carbon

Trihalomethanes

aligned with accepted environmental knowledge. The use
of Explainable Al improved the transparency by
providing useful  information  for  environmental
surveillance. The Figure 5 shows an average impact of
features on the output prediction.

0.00
mean(|SHAP value|) (average impact on model output magnitude)

0.05 0.10

0.15 0.20 0.25 0.30

Figure 5:SHAP output magnitude plot illustrating the average impact of features

The Explainable Al bridged the gap between
accuracy and interpretability. This enhances its practical
adoption for real-world application. This proposed
framework has demonstrated potential for scalable and
interpretable quality assessment systems.

Conclusion:  An explainable  machine learning
framework for water quality classification were
presented. Multiple data imputation techniques were
adopted handle the missing data. The iterative imputation
method has shown a superior performance over the other
two methods by preserving multivariate relations in
dataset. Experiments were conducted to train the models
using Logistic Regression, KNN, SVM, RF and
XGBoost. Their results showed that the ensemble
learning models have outperformed compared to other
classifiers. The stacked ensemble achieved highest
predictive accuracy and robustness, with an accuracy of
0.7496 and F1-score of 0.5597. This indicates a well
balance between precision and recall, comparing to
individual classifiers.

To visualize the transparency of feature
importance, Explainable Artificial Intelligence were used.
The SHAP were employed to interpret model’s
predictions. The XAl analysis identified values of sulfate,
pH, chloramines, and hardness are the most influential
factors affecting the overall water quality. This approach
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also offer an effective and interpretable solution for water
quality monitering. Such systems and can be useful in
making data-driven based decision support systems for
marine and freshwater monitoring. Future work can
incorporate spatio-temporal data and real-time 10T based
sensor neworks to further extend the applicability of this
framework.
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