Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

SOFTWARE DEFECT PREDICTION USING MACHINE LEARNING TECHNIQUES

Humaira Khalid", Mansoor Hai?*, M. Sharif®, Aijaz Panhwar?, Zainulibad®, Mehtab Ahmed?, Aijaz Solangi?, Zain

Solangi?, Baitullah?
! PCSIR Head Office Islamabad, Pakistan
2 PCSIR Laboratories Complex, Karachi, Sindh, Pakistan
® Benazir Bhutto Shaheed University Lyari, Karachi, Sindh, Pakistan
*Corresponding Author: mansoorhai@yahoo.com

ABSTRACT: Software flaws can result in large financial losses, decreased user’ happiness, and a
general decrease in the dependability of software systems. Therefore, early in the software
development lifecycle defect, detection and mitigation are critical. This paper provides an overview of
machine learning-based software defect prediction. Exploring the use of machine learning algorithms
to forecast and categorize software problems based on historical data and other software metrics is the
goal. In addition to discussing the difficulties in defect prediction, this study provides a thorough
analysis of the most recent machine learning methods used to this problem. Additionally, it sheds light
on the feature selection, evaluation criteria, and data preprocessing methods frequently used in
software defect prediction studies. The article concludes with a comparison of various machines
learning methods and how well they perform in forecasting software flaws, highlighting the advantages
and disadvantages of each method. The results of this study help to advance our understanding of
software defect prediction using machine learning and give researchers and practitioner’s advice on

how to select the best tools for their individual needs.

Key words: Algorithms Defect, Evaluation, Machine Learning, Techniques, Software.

(Received 02.10.2025 Accepted 15.12.2025)

INTRODUCTION

Software flaws can have detrimental effects,
such as lost revenue, lowered user happiness, and
weakened system dependability. In the software
development process, early defect detection and
mitigation are crucial. Software Defect Prediction is part
of the software development life cycle in which we
predict the fault using a Machine Learning approach with
historical data [1].An overview of software fault
prediction using machine learning approaches is the goal
of this study. Exploring how machine learning algorithms
can be used to forecast and categorize software problems
based on historical data and different software indicators
is the goal. The study examines the most recent machine
learning methods applied to defect prediction as well as
the difficulties connected with defect prediction. It also
covers the methods for data preprocessing, feature
selection, and assessment metrics frequently used in
software defect prediction research. The paper concludes
with a comparative analysis of different machine learning
algorithms and their performance in predicting software
defects, highlighting their strengths and limitations. The
findings of this study contribute to advancing the
understanding of software defect prediction using
machine learning and offer valuable guidance for
researchers and practitioners in selecting suitable
techniques for their specific needs.

124

Background: Software defects are inevitable in software
development and can cause a variety of problems,
including system failures, security flaws, and user
dissatisfaction. From an external perspective, a defect is
the violation or failure of the framework/system to
accomplish specific capacities [2, 3]. Traditional defect
detection approaches heavily rely on manual testing,
which is time-consuming, expensive, and may not
provide comprehensive coverage. Detecting and
resolving defects early in the software development
lifecycle is crucial to ensure the delivery of high-quality
software products. Promising approaches for predicting
software defects now include machine learning
techniques. Machine learning algorithms can uncover
patterns and associations that may be used to detect
possible flaws in software systems by utilizing historical
data and different software metrics. By automating the
defect prediction process, this method has the advantage
of giving developers insightful data they can use to set
priorities and assign resources for defect resolving. In
recent years, there has been a lot of interest in the
application of machine learning techniques for software
fault prediction. To boost the precision and efficacy of
defect prediction models, researchers and practitioners
have investigated a variety of algorithms, data
preprocessing techniques, and evaluation measures. This
study attempts to give a thorough overview of the state-
of-the-art in software defect prediction using machine

mailto:Author:%20mansoorhai@yahoo.com
https://www.mdpi.com/2071-1050/15/6/5517#B1-sustainability-15-05517

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

learning techniques, emphasizing the strides made in this
area and the issues that still need to be resolved.
Researchers and practitioners can obtain insight into the
possible advantages and constraints of these strategies by
comprehending the history and present state of software
defect prediction using machine learning. This
information can assist in the construction of more precise
and effective defect prediction models as well as the
formulation of successful defect management plans for
software development projects.

Motivation: This paper's motivation comes from the
growing significance of software defect prediction in the
field of software engineering. Delivering high-quality
software products requires early problem detection and
repair in the software development process. The
conventional manual testing methods can be costly, time-
consuming, and may not offer complete coverage. The
most critical stage of any software, which necessitates
comprehensive testing, is software defect identification,
which is the most significant aspect of the SDLC [4].The
automation of the fault prediction process and the
provision of insightful data to software engineers are both
possible outcomes of machine learning techniques.
Machine learning algorithms can uncover trends and
associations that could potentially point to software
system flaws by examining historical data and software
metrics. Nevertheless, there is a need for a thorough
assessment of the most cutting-edge approaches,
difficulties, and best practices in this field despite the
growing interest in applying machine learning for defect
prediction. This paper's main goal is to close the
information gap by offering a thorough examination of
machine learning-based software fault prediction. This
paper seeks to assemble the body of knowledge and
developments in the area by researching and evaluating
the available literature. Additionally, it seeks to offer
academics and professionals insightful information on
how to choose the best machine learning algorithms, data
pretreatment methods, feature selection strategies, and
assessment metrics for efficient defect prediction.
Additionally, by comparing several machine learning
methods, this research intends to show their advantages,
disadvantages, and efficacy in identifying software
problems. This analysis can help academics and
professionals select the best algorithm for their unique
needs.

The overall goal of this study is to increase
knowledge of software defect prediction using machine
learning and to serve as a useful tool for researchers,
practitioners, and decision-makers involved in software
development and quality assurance.

Objectives: This research paper aims to:

1. Give an overview of the prediction of software
defects and their significance in software
engineering.

2. Research and assess the effectiveness of machine
learning techniques for forecasting software defects.

3. Examine the challenges and limitations of machine
learning for defect prediction and consider alternate
approaches.

4. Discuss the effects of data preparation techniques on
defect prediction models.

5. For software defect forecasting, look at feature
selection methodologies.

6. Methods of machine learning for defect prediction
are compared and contrasted.

7. Give advice on the standards to use when evaluating
defect prediction models.

8. The benefits and drawbacks of various machine
learning techniques should be highlighted.

9. Determine potential areas for future research in
software defect prediction using machine learning.

The paper's overall goal is to increase software
fault prediction using machine learning by offering
comprehension, insights, and new information.

Software Defect Prediction

Definition and Importance: Software defect prediction
is the process of identifying and categorizing probable
flaws in software systems using predictive models. In
order to effectively manage resources and concentrate on
the key regions for defect identification and resolution, it
seeks to proactively identify areas of code that are more
likely to have flaws.

Predicting software failures is crucial because it
can stop problems from spreading to later phases of the
software development lifecycle. Early detection of
potential flaws allows developers to fix them, minimizing
their effects on system dependability, user happiness, and
total project costs. Defect prediction also helps to
increase maintenance efforts, enhance software quality,
and streamline software testing procedures.

Challenges and Limitations: There are difficulties and
restrictions with software fault prediction. Some of the
major difficulties include:

a. Unbalanced datasets: Software defect datasets
frequently show class imbalance, where the
proportion of defective instances to non-defective
instances is much lower. Machine learning
algorithms' performance may be impacted by this
mismatch, producing inaccurate results.

b. Feature selection: It's essential to choose pertinent
software metrics or features for fault prediction.
However, it might be difficult to pick out the most
useful aspects from the huge array of data that are
available. To get around this problem, feature
selection techniques are used.

c. Data quality: The accuracy of the predictive models
might be impacted by the quality of the historical
data utilized for defect prediction. Uncertainty can be

https://www.mdpi.com/2071-1050/15/6/5517#B10-sustainability-15-05517

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

introduced and have an impact on the performance of
the models due to incomplete or inconsistent data,
noise, and missing values.

Over-fitting: Over-fitting is a problem with machine
learning models where the model gets too specialized
to the training data and is unable to generalize
successfully to new, untainted data. When used with
real-world settings, over-fitting might result in
subpar predicting accuracy.

Approaches to Defect Prediction: For predicting
software defects, a number of strategies have been used,
such as:

Supervised learning: This approach involves
which involves building machine learning models using
past data that has been labeled as either defective or not.
The models use the labeled data's patterns to predict new,
unlabeled instances.

Un-supervised learning: When there is a lack of
labeled data or it is inaccessible, unsupervised learning
approaches are applied. These methods seek to find
patterns and abnormalities in data without being aware of
fault labels beforehand.

Semi-supervised learning: Predictive models are
created using this method, which mixes labeled and
unlabeled data. Labeled instances reveal the presence of
defects, whereas unlabeled instances aid in the
identification of underlying patterns.

Transfer learning: To enhance fault prediction in
the target domain, transfer learning uses knowledge from
a source domain (such as a different project). It is useful
when the target domain has few labeled data points. The
choice of an appropriate strategy is influenced by the
accessibility of labeled data, the nature of the software
project, and the precise defect prediction objectives. In
summary, software defect prediction is extremely
important for raising software quality and minimizing the
effects of errors. Addressing issues such uneven datasets,
feature selection, poor data quality, and over-fitting are
necessary. Effective defect prediction can be achieved
using a variety of techniques, such as supervised learning,
unsupervised learning, semi-supervised learning, and
transfer learning.

Machine learning techniques for defect prediction:
Due to their capacity to recognize patterns and
relationships in past data, machine learning techniques
have been extensively used in software fault prediction.
Here, essential elements of machine learning for
predicting defects, such as data preprocessing, feature
selection, and the use of several classification techniques
are reviewed.

Data Preprocessing: The quality and usability of the
data for machine learning algorithms are ensured through
data preprocessing, a critical step in defect prediction.
There are several common preprocessing methods:

126

Data cleaning: Getting rid of duplicate instances,
dealing with missing values, and dealing with outliers to
maintain data integrity.

Data normalization: To avoid features with
bigger values dominating the model, scale the data to a
common range (for example, 0 to 1).

Data balancing: Addressing the issue of class
inequality with methods like SMOTE (Synthetic
Minority Over-sampling Technique), which involve
either oversampling the minority class or under-sampling
the dominant class.

Dimensionality reduction: Fewer characteristics
are used in order to reduce computing complexity and
noise risk. Algorithms for feature selection or Principal
Component Analysis (PCA) can be used.

Feature Selection: Finding the most pertinent and
instructive features for defect prediction are the goal of
feature selection. This process aids in reducing
dimensionality, enhancing model performance, and
improving interpretability. Typical feature selection
methods include:

Statistical methods: Using statistical tests to
evaluate the usefulness of features, such as chi-square
analysis, correlation, and information gain.

Wrapper methods: Making use of search
techniques like backward elimination, forward selection,
or genetic algorithms to assess the prediction strength of
subsets of features.

Embedded methods: utilizing feature selection
strategies built into machine learning algorithms, like
regularization techniques (like L1 or L2 regularization).

Classification Algorithms: Defect prediction can be
accomplished using a variety of machine learning
algorithms. Numerous examinations demonstrate that the
technique is a significant strategy to study the
classification of software defects [5]. The exact properties
of the data and the application's needs determine which
algorithm is used. A few often employed algorithms are
as follows:

Decision Trees: Tree-based models that divide
the data into categories based on features to produce a
decision tree structure.

Random Forests: This ensemble technique
combines different decision trees to increase prediction
accuracy.

Support Vector Machines (SVM): SVM is a
supervised ML model mostly applied to data with two
classes as output [6]. An algorithm for binary
classification that locates a hyper plane to divide data
points. Apart from linear classification, they can also
perform non-linear classification efficiently. [7]

Naive Bayes: It is a probabilistic classifier based
on Bayes theorem, which works on the primary
assumption that features are conditionally independent

[8].

https://www.mdpi.com/2071-1050/15/6/5517#B10-sustainability-15-05517

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

Neural Networks: MLP can be used to address
nearly any problem, including pattern recognition,
Interpolation [9].Neurons are interconnected nodes in
multilayered networks called neural networks that are
used to learn complex patterns.

Ensemble Methods: Combining different
models, such AdaBoost or Gradient Boosting, to produce
a more accurate predictive model.

Several metrics, including accuracy, precision,
recall, F1-score, ROC curve, and AUC, can be used to
assess how well these algorithms work. Selecting the best
algorithm for a certain defect prediction task requires
testing out a variety of algorithms and comparing their
effectiveness. The performance and generalizability of
the selected algorithm can also be enhanced by using
techniques for hyper-parameter adjustment and model
optimization. In conclusion, feature selection, data
preprocessing, and the application of multiple
classification algorithms are all part of machine learning
techniques for defect prediction. Data preparation ensures
data quality. The data's structure and the task's unique
criteria for defect prediction determine the selection of
the best techniques.

Evaluation Metrics: The effectiveness of defect
prediction models is evaluated in large part through
evaluation metrics. They aid in evaluating how well,
accurately, and consistently the models anticipate
software faults. Following are some typical evaluation
measures for fault prediction:

Accuracy: A key indicator of how well forecasts are
made generally is accuracy. It is figured out as the
proportion of accurately predicted instances (including
true positives and true negatives) to all instances. When
working with datasets that are unbalanced and where the
majority class predominates, precision may not be
enough on its own.

Precision: When comparing all anticipated positive
instances, precision is defined as the percentage of
accurately predicted positive occurrences (also known as
faulty instances). It focuses on cutting down on false
positives, which happen when occurrences that aren't
actually defective are mistakenly labelled as such. A low
rate of false positives is suggested by a high precision.

Recall (Sensitivity or True Positive Rate): Measured by
recall, the percentage of accurately predicted positive
cases (defective instances) among all actual positive
instances. False, negatives incidents when defective
instances are mistakenly labeled as non-defective are
minimized as a main goal. A low percentage of false
negatives is suggested by a good recall.

F1-Score: A balanced evaluation statistic that takes into
accounts both false positives and false negatives are
provided by the F1-score, which is the harmonic mean of

127

precision and recall. It is determined by multiplying 2 by
(precision * recall) / (precision + recall). When there is an
unbalance between recall and precision, the F1-score is
helpful.

Receiver Operating Characteristic (ROC) Curve and
area Under the Curve (AUC): The true positive rate
(recall) wversus the false positive rate trade-off is
graphically represented by the ROC curve. It displays
how well a classifier performs at different categorization
thresholds. The AUC denotes the region beneath the
ROC curve and offers a single value that summarizes the
overall effectiveness of the classifier. A better-
performing model has a greater AUC. These are but a
handful of instances of evaluation metrics that are applied
to defect prediction. Other metrics, like specificity,
Matthew's Correlation Coefficient (MCC), or balanced
accuracy, might also be used, depending on the task's
specific requirements. When choosing proper assessment
metrics, it is crucial to take into account the features of
the dataset and the precise objectives of the defect
prediction task. The selection should be in line with the
priorities and specifications of the software development
process. Different metrics offer different perspectives on
model performance.

Experimental setup and results: The experimental
setup for predicting software defects entails the choosing
of datasets, the machine learning algorithms, the setting
of parameters, and the assessment of model efficacy.
Here is a description of the experimental design and the
way the findings were presented:

Dataset Selection: A suitable dataset for the experiment
is chosen, consisting of historical software data with
instances labeled to indicate whether they are flawed or
not. The dataset needs to be adequate in scope and
indicative of the target software system's software
metrics.

Data Split: Training and testing sets are created from the
dataset. The testing set is used to assess the performance
and generalization skills of the machine learning models,
whereas the training set is used to train the models. To
ensure that the distribution of defective and non-defective
cases is maintained in both sets, the data can be divided
randomly or using certain methods such stratified
sampling.

Machine Learning Algorithms: Several machine
learning algorithms are chosen for the experiment based
on how well they perform fault prediction tasks. Decision
trees, random forests, support vector machines, neural
networks, or other previously discussed methods may be
among them. The methods are configured with the proper
parameters, such as the regularization parameter in
support vector machines or the number of trees in a
random forest, when they are implemented.

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

Performance Evaluation: The testing set is used to
assess the trained models. To evaluate the effectiveness
of the models, many evaluation metrics are produced,
including accuracy, precision, recall, Fl-score, ROC
curve, and AUC. Depending on the needs, additional
metrics like specificity or MCC may also be computed.

Comparative Analysis: The outcomes of several
machine learning algorithms are contrasted and
examined. To determine which algorithms produce the
best precision/recall trade-off or the highest accuracy,
performance measurements are evaluated. Taking into
account elements like interpretability, computational
complexity, and scalability, the benefits and drawbacks
of each algorithm are explored.

Statistical Analysis: To ascertain the data' significance,
statistical analysis may be used. The validity of the
observed differences across models can be evaluated
using methods like hypothesis testing, confidence
intervals, or statistical significance tests.

RESULTS AND DISCUSSION

The important discoveries and ideas are
highlighted in a detailed discussion of the experimental
data. Analysis is done on the variables affecting
performance, such as dataset characteristics, method
choice, and parameter tweaking. Discussions of any
intriguing findings or unexpected results offer
explanations or suggest possible directions for additional
research.

Limitations: Any restrictions on the experimental design
or the findings were addressed and acknowledged. These
restrictions could be related to the dataset's
representativeness, biases, presumptions made during the
experiment, or limits imposed by the selected machine
learning techniques. An in-depth knowledge of the
experiments that were carried out, how well the machine
learning models performed, and the consequences of the
findings are intended to be provided through the
presentation of the experimental setup and outcomes. It
helps researchers and professionals to evaluate the
efficacy of various strategies and make defensible
choices regarding the incorporation of defect prediction
techniques in software engineering processes.

Comparative Analysis: Comparative analysis in
software defect prediction compares the effectiveness of
several machine learning algorithms or methodologies in
order to determine the best strategy for doing so. A
comprehensive analysis of previous research on software
failure, emphasizing metrics, procedures and public-
private data sets, was published by C Cata et al. [10].

The steps involved in the comparative analysis
are outlined below:

128

Selection of Algorithms: For comparison, a collection of
machine learning techniques is chosen, including
decision trees, random forests, support vector machines,
naive Bayes, neural networks, and ensemble approaches.
These algorithms are selected for defect prediction tasks
based on their applicability, their popularity in the
literature, or their potential to achieve high accuracy or
balanced precision-recall trade-offs.

Experimental Setup: For a fair comparison, the
experimental setup for each method uses the same dataset
and assessment measures. The dataset is divided into
training and testing sets, with the same partitions used for
both algorithm training and evaluation. To improve
performance, the hyper-parameters of the algorithms can
be adjusted using strategies like grid search or cross-
validation.

Performance Evaluation: The effectiveness of each
algorithm is assessed using the chosen evaluation
measures, such as accuracy, precision, recall, F1-score,
ROC curve, and AUC. Each algorithm's outcomes are
calculated and noted in order to derive a numerical
assessment of their predictive power.

Analysis of Results: Analyses and comparisons are made
of the outcomes of various algorithms. To ascertain
which algorithms attain the best accuracy or offer the best
precision/recall trade-off, key performance measures are
analyzed. Using the proper statistical tests, it is possible
to determine whether any detected changes are
statistically significant.

Strengths and Limitations: Strengths and Drawbacks
Based on the outcomes, the advantages and disadvantages
of each method are highlighted. The advantages could be
excellent accuracy, noise resistance, or the capacity to
manage unbalanced datasets. It's possible that the
restrictions relate to problems with interpretability,
computational complexity, or sensitivity to parameter
settings.

Interpretability and Explain ability: The algorithms'
readability and explicability are taken into account. Some
algorithms, like as naive Bayes or decision trees, give
clear and understandable models that might shed light on
the wvariables influencing defect prediction. Other
algorithms may offer great predicted accuracy but lack
interpretability, such as neural networks or ensemble
approaches. Discussion is had regarding the compromise
between performance and interpretability.

Generalizability: The effectiveness of the algorithms is
evaluated by comparing them across various datasets or
software projects. Algorithms with a higher degree of
generalizability regularly outperform on a variety of
datasets.

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

Practical Considerations: The availability of libraries or
frameworks, scalability, computational needs, and ease of
implementation are only a few examples of practical
factors that are taken into account. These elements have
an impact on the applicability and viability of the
algorithms in actual software development settings.

Recommendations: The best suited algorithm(s) for
software defect prediction are suggested based on the
comparison study. The formulation of these
recommendations takes into accounts the advantages and
disadvantages of each algorithm as well as their trade-
offs. It is also important to consider the software
development project's particular context, requirements,
and restrictions. The comparison analysis assists
academics and industry professionals in selecting the best
machine learning algorithms for defect prediction. It
gives information about the effectiveness, advantages,
disadvantages, interpretability, and generalizability of
various methods, assisting in the selection of efficient
defect prediction methods for use in software engineering
processes.

Future Directions and Research Challenges: The
future directions and research problems in the subject of
software defect prediction can influence its development.
Here are some probable concentration points:

Incorporating Advanced Machine Learning
Techniques: Utilizing Cutting-Edge Machine Learning
Methodologies: Future studies may examine the use of
cutting-edge machine learning methods to anticipate
software defects, including deep learning, reinforcement
learning, and transfer learning. These methodologies may
find novel patterns and relationships in software data and
have demonstrated promising outcomes in a number of
disciplines.

Handling Imbalanced Data: Imbalanced datasets pose a
challenge in defect prediction, as the majority class may
overshadow the minority class, leading to biased models.
Future research can focus on developing effective
techniques for handling imbalanced data, such as
advanced sampling methods, cost-sensitive learning
approaches, or ensemble techniques specifically designed
for imbalanced datasets.

Feature Engineering and Selection: In order to foresee
defects, feature engineering is essential. Future studies
could look into novel approaches to extracting and
visualizing software metrics or introducing domain-
specific expertise into the feature engineering workflows.
Research may also concentrate on creating automated or
intelligent feature selection techniques that can pinpoint
the most pertinent and instructive features for defect
prediction.

Multi-Objective Optimization: In order to maximize
accuracy while reducing false positives or false negatives,

129

defect prediction frequently involves numerous
competing goals. To identify a set of solutions that
represent various trade-offs between these objectives,
future research can investigate multi-objective
optimization approaches. Decision-makers may then have
a variety of options based on their own goals and needs.

Explainable Al in Defect Prediction: In order for
stakeholders to understand and have confidence in the
prediction models, interpretability and explainability are
essential. The development of explainable Al methods
that offer open and clear insights into the elements
influencing defect prediction can be the focus of future
study. This may enhance the use and acceptability of
defect prediction models in actual applications.

Context Aware Defect Prediction: Consideration of
contextual data, such as the development environment,
team dynamics, or software process characteristics, can
improve software defect prediction even more. Future
studies can look at the impact of context on defect
prediction and create context-sensitive algorithms that
can accommodate various software development
environments.

Cross Project Defect Prediction: Utilizing information
from many software projects to improve defect prediction
performance is known as cross-project defect prediction.
In light of the heterogeneity of data and the difficulties
posed by various software domains and settings, future
research can examine efficient approaches for sharing
knowledge across projects.

Integration with Software Development Processes:
Integration with Software Development Processes: For
practical application, defect prediction must be integrated
into software development processes. The creation of
workflows, tools, and methodologies for seamless
integration that allow defect prediction models to be
integrated into current development environments can be
the focus of future study. This will enable early defect
detection and remediation.

Real-Time Defect Prediction: Real-Time defect
prediction seeks to enable ongoing monitoring and
prediction of problems during software development. The
proactive management and prevention of defects can be
enabled through future research into approaches for real-
time data collecting, processing, and prediction.

Benchmarking and Reproducibility: ~ Securing
benchmark datasets, standardized evaluation procedures,
and the ability to reproduce findings are significant
obstacles in defect prediction research. In the future,
efforts can be directed towards developing standard
benchmark datasets and evaluation criteria, encouraging
the use of open-source software, and allowing the
comparison of results from various studies.

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

In order to progress the field of software defect
prediction, it is important to address these future
directions and research problems. Doing so will result in
models that are more precise, comprehensible, and
context-aware, which will make it easier to create
software systems that are of high quality.

Conclusion: This paper focuses on software defect
prediction using machine learning techniques as a
strategy to enhance software quality and reduce
development costs. It highlights the need of proactive
defect management and draws attention to the
shortcomings of conventional methods. In addition to
presenting assessment criteria and experimental design,
the research investigates various machine learning
methods for defect prediction. It contrasts the algorithms
and examines the way forward, incorporating cutting-
edge techniques and enhancing interpretability, among
other things. In conclusion, this paper provides insightful
information on software fault prediction using machine
learning approaches. It provides useful insights into the
theoretical underpinnings, practical considerations, and
future directions of this significant research topic.
Product development teams can proactively identify and
address probable flaws by using machine learning
approaches for defect prediction, which will increase the
quality of the product and customer satisfaction.

REFERENCES
[1] Arora, |.; Tetarwal, V.; Saha (2015): A. Open
issues in software defect prediction. Procedia
Comput. Sci., 46, 906-912.
[2] I. C. Society, "IEEE 729-1983 - IEEE Standard

Glossary of Software

Terminology,” 1982.

Engineering

130

(3]
[4]

(5]
(6]

(7]

(8]

[0l

[10]

W. Bi, (2013). "Research on Software Defect
Classification and Analysis," Computer Science.
Grishma, B.R.; Anjali, C. (2015). Software root
cause prediction using clustering techniques: A
review. In Proceedings of the 2015 Global
Conference on Communication Technologies
(GCCT) IEEE, Red Hook, NY, USA, 23-24
April 2015; pp. 511-515.

L. Macaulay, Human-computer interaction for
software designers, Itp-Media, 1995.

Grishma, B.R.; Anjali, C. Software root cause
prediction using clustering techniques: A review.
In Proceedings of the 2015 Global Conference
on Communication Technologies (GCCT) IEEE,
Red Hook, NY, USA, 23-24 April 2015; pp.
511-515

I. Raphael and C. Michael, "Fault links:
identifying module and fault types and their
relationship," 2004

L. Meng-ren, "Research on Software Defects
Classification,” Application Research of
Computers, 2004.

Meiliana, S. Karim, H. L. H. S. Warnars, F. L.
Gaol, E. Abdul rahman, and B. Soewito, (2017).
Software metrics for fault prediction using
machine learning approaches: A literature
review with PROMISE repository dataset, in
2017,IEEE InternationalConference on
Cybernetics and Computational Intelligence
(CyberneticsCom), 2017, pp. 19-23.
doi:10.1109/CYBERNETICSCOM.2017.
8311708

C. Catal and B. Diri. A systematic review of
software fault prediction studies, Expert Syst.
Appl., vol. 36, no. 4, pp. 73467354, May 2009.
doi: 10.1016/j.eswa.2008.10.027 .

