
Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 124

SOFTWARE DEFECT PREDICTION USING MACHINE LEARNING TECHNIQUES

Humaira Khalid
1
, Mansoor Hai

2*
, M. Sharif

3
, Aijaz Panhwar

2
, Zainulibad

2
, Mehtab Ahmed

2
, Aijaz Solangi

2
, Zain

Solangi
2
, Baitullah

2

1 PCSIR Head Office Islamabad, Pakistan
2 PCSIR Laboratories Complex, Karachi, Sindh, Pakistan

3 Benazir Bhutto Shaheed University Lyari, Karachi, Sindh, Pakistan

*Corresponding Author: mansoorhai@yahoo.com

ABSTRACT: Software flaws can result in large financial losses, decreased user’ happiness, and a

general decrease in the dependability of software systems. Therefore, early in the software

development lifecycle defect, detection and mitigation are critical. This paper provides an overview of

machine learning-based software defect prediction. Exploring the use of machine learning algorithms

to forecast and categorize software problems based on historical data and other software metrics is the

goal. In addition to discussing the difficulties in defect prediction, this study provides a thorough

analysis of the most recent machine learning methods used to this problem. Additionally, it sheds light

on the feature selection, evaluation criteria, and data preprocessing methods frequently used in

software defect prediction studies. The article concludes with a comparison of various machines

learning methods and how well they perform in forecasting software flaws, highlighting the advantages

and disadvantages of each method. The results of this study help to advance our understanding of

software defect prediction using machine learning and give researchers and practitioner’s advice on

how to select the best tools for their individual needs.

Key words: Algorithms Defect, Evaluation, Machine Learning, Techniques, Software.

(Received 02.10.2025 Accepted 15.12.2025)

INTRODUCTION

 Software flaws can have detrimental effects,

such as lost revenue, lowered user happiness, and

weakened system dependability. In the software

development process, early defect detection and

mitigation are crucial. Software Defect Prediction is part

of the software development life cycle in which we

predict the fault using a Machine Learning approach with

historical data [1].An overview of software fault

prediction using machine learning approaches is the goal

of this study. Exploring how machine learning algorithms

can be used to forecast and categorize software problems

based on historical data and different software indicators

is the goal. The study examines the most recent machine

learning methods applied to defect prediction as well as

the difficulties connected with defect prediction. It also

covers the methods for data preprocessing, feature

selection, and assessment metrics frequently used in

software defect prediction research. The paper concludes

with a comparative analysis of different machine learning

algorithms and their performance in predicting software

defects, highlighting their strengths and limitations. The

findings of this study contribute to advancing the

understanding of software defect prediction using

machine learning and offer valuable guidance for

researchers and practitioners in selecting suitable

techniques for their specific needs.

Background: Software defects are inevitable in software

development and can cause a variety of problems,

including system failures, security flaws, and user

dissatisfaction. From an external perspective, a defect is

the violation or failure of the framework/system to

accomplish specific capacities [2, 3]. Traditional defect

detection approaches heavily rely on manual testing,

which is time-consuming, expensive, and may not

provide comprehensive coverage. Detecting and

resolving defects early in the software development

lifecycle is crucial to ensure the delivery of high-quality

software products. Promising approaches for predicting

software defects now include machine learning

techniques. Machine learning algorithms can uncover

patterns and associations that may be used to detect

possible flaws in software systems by utilizing historical

data and different software metrics. By automating the

defect prediction process, this method has the advantage

of giving developers insightful data they can use to set

priorities and assign resources for defect resolving. In

recent years, there has been a lot of interest in the

application of machine learning techniques for software

fault prediction. To boost the precision and efficacy of

defect prediction models, researchers and practitioners

have investigated a variety of algorithms, data

preprocessing techniques, and evaluation measures. This

study attempts to give a thorough overview of the state-

of-the-art in software defect prediction using machine

mailto:Author:%20mansoorhai@yahoo.com
https://www.mdpi.com/2071-1050/15/6/5517#B1-sustainability-15-05517

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 125

learning techniques, emphasizing the strides made in this

area and the issues that still need to be resolved.

Researchers and practitioners can obtain insight into the

possible advantages and constraints of these strategies by

comprehending the history and present state of software

defect prediction using machine learning. This

information can assist in the construction of more precise

and effective defect prediction models as well as the

formulation of successful defect management plans for

software development projects.

Motivation: This paper's motivation comes from the

growing significance of software defect prediction in the

field of software engineering. Delivering high-quality

software products requires early problem detection and

repair in the software development process. The

conventional manual testing methods can be costly, time-

consuming, and may not offer complete coverage. The

most critical stage of any software, which necessitates

comprehensive testing, is software defect identification,

which is the most significant aspect of the SDLC [4].The

automation of the fault prediction process and the

provision of insightful data to software engineers are both

possible outcomes of machine learning techniques.

Machine learning algorithms can uncover trends and

associations that could potentially point to software

system flaws by examining historical data and software

metrics. Nevertheless, there is a need for a thorough

assessment of the most cutting-edge approaches,

difficulties, and best practices in this field despite the

growing interest in applying machine learning for defect

prediction. This paper's main goal is to close the

information gap by offering a thorough examination of

machine learning-based software fault prediction. This

paper seeks to assemble the body of knowledge and

developments in the area by researching and evaluating

the available literature. Additionally, it seeks to offer

academics and professionals insightful information on

how to choose the best machine learning algorithms, data

pretreatment methods, feature selection strategies, and

assessment metrics for efficient defect prediction.

Additionally, by comparing several machine learning

methods, this research intends to show their advantages,

disadvantages, and efficacy in identifying software

problems. This analysis can help academics and

professionals select the best algorithm for their unique

needs.

 The overall goal of this study is to increase

knowledge of software defect prediction using machine

learning and to serve as a useful tool for researchers,

practitioners, and decision-makers involved in software

development and quality assurance.

Objectives: This research paper aims to:

1. Give an overview of the prediction of software

defects and their significance in software

engineering.

2. Research and assess the effectiveness of machine

learning techniques for forecasting software defects.

3. Examine the challenges and limitations of machine

learning for defect prediction and consider alternate

approaches.

4. Discuss the effects of data preparation techniques on

defect prediction models.

5. For software defect forecasting, look at feature

selection methodologies.

6. Methods of machine learning for defect prediction

are compared and contrasted.

7. Give advice on the standards to use when evaluating

defect prediction models.

8. The benefits and drawbacks of various machine

learning techniques should be highlighted.

9. Determine potential areas for future research in

software defect prediction using machine learning.

 The paper's overall goal is to increase software

fault prediction using machine learning by offering

comprehension, insights, and new information.

Software Defect Prediction

Definition and Importance: Software defect prediction

is the process of identifying and categorizing probable

flaws in software systems using predictive models. In

order to effectively manage resources and concentrate on

the key regions for defect identification and resolution, it

seeks to proactively identify areas of code that are more

likely to have flaws.

 Predicting software failures is crucial because it

can stop problems from spreading to later phases of the

software development lifecycle. Early detection of

potential flaws allows developers to fix them, minimizing

their effects on system dependability, user happiness, and

total project costs. Defect prediction also helps to

increase maintenance efforts, enhance software quality,

and streamline software testing procedures.

Challenges and Limitations: There are difficulties and

restrictions with software fault prediction. Some of the

major difficulties include:

a. Unbalanced datasets: Software defect datasets

frequently show class imbalance, where the

proportion of defective instances to non-defective

instances is much lower. Machine learning

algorithms' performance may be impacted by this

mismatch, producing inaccurate results.

b. Feature selection: It's essential to choose pertinent

software metrics or features for fault prediction.

However, it might be difficult to pick out the most

useful aspects from the huge array of data that are

available. To get around this problem, feature

selection techniques are used.

c. Data quality: The accuracy of the predictive models

might be impacted by the quality of the historical

data utilized for defect prediction. Uncertainty can be

https://www.mdpi.com/2071-1050/15/6/5517#B10-sustainability-15-05517

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 126

introduced and have an impact on the performance of

the models due to incomplete or inconsistent data,

noise, and missing values.

d. Over-fitting: Over-fitting is a problem with machine

learning models where the model gets too specialized

to the training data and is unable to generalize

successfully to new, untainted data. When used with

real-world settings, over-fitting might result in

subpar predicting accuracy.

Approaches to Defect Prediction: For predicting

software defects, a number of strategies have been used,

such as:

 Supervised learning: This approach involves

which involves building machine learning models using

past data that has been labeled as either defective or not.

The models use the labeled data's patterns to predict new,

unlabeled instances.

 Un-supervised learning: When there is a lack of

labeled data or it is inaccessible, unsupervised learning

approaches are applied. These methods seek to find

patterns and abnormalities in data without being aware of

fault labels beforehand.

 Semi-supervised learning: Predictive models are

created using this method, which mixes labeled and

unlabeled data. Labeled instances reveal the presence of

defects, whereas unlabeled instances aid in the

identification of underlying patterns.

 Transfer learning: To enhance fault prediction in

the target domain, transfer learning uses knowledge from

a source domain (such as a different project). It is useful

when the target domain has few labeled data points. The

choice of an appropriate strategy is influenced by the

accessibility of labeled data, the nature of the software

project, and the precise defect prediction objectives. In

summary, software defect prediction is extremely

important for raising software quality and minimizing the

effects of errors. Addressing issues such uneven datasets,

feature selection, poor data quality, and over-fitting are

necessary. Effective defect prediction can be achieved

using a variety of techniques, such as supervised learning,

unsupervised learning, semi-supervised learning, and

transfer learning.

Machine learning techniques for defect prediction:
Due to their capacity to recognize patterns and

relationships in past data, machine learning techniques

have been extensively used in software fault prediction.

Here, essential elements of machine learning for

predicting defects, such as data preprocessing, feature

selection, and the use of several classification techniques

are reviewed.

Data Preprocessing: The quality and usability of the

data for machine learning algorithms are ensured through

data preprocessing, a critical step in defect prediction.

There are several common preprocessing methods:

 Data cleaning: Getting rid of duplicate instances,

dealing with missing values, and dealing with outliers to

maintain data integrity.

 Data normalization: To avoid features with

bigger values dominating the model, scale the data to a

common range (for example, 0 to 1).

 Data balancing: Addressing the issue of class

inequality with methods like SMOTE (Synthetic

Minority Over-sampling Technique), which involve

either oversampling the minority class or under-sampling

the dominant class.

 Dimensionality reduction: Fewer characteristics

are used in order to reduce computing complexity and

noise risk. Algorithms for feature selection or Principal

Component Analysis (PCA) can be used.

Feature Selection: Finding the most pertinent and

instructive features for defect prediction are the goal of

feature selection. This process aids in reducing

dimensionality, enhancing model performance, and

improving interpretability. Typical feature selection

methods include:

 Statistical methods: Using statistical tests to

evaluate the usefulness of features, such as chi-square

analysis, correlation, and information gain.

 Wrapper methods: Making use of search

techniques like backward elimination, forward selection,

or genetic algorithms to assess the prediction strength of

subsets of features.

 Embedded methods: utilizing feature selection

strategies built into machine learning algorithms, like

regularization techniques (like L1 or L2 regularization).

Classification Algorithms: Defect prediction can be

accomplished using a variety of machine learning

algorithms. Numerous examinations demonstrate that the

technique is a significant strategy to study the

classification of software defects [5]. The exact properties

of the data and the application's needs determine which

algorithm is used. A few often employed algorithms are

as follows:

 Decision Trees: Tree-based models that divide

the data into categories based on features to produce a

decision tree structure.

 Random Forests: This ensemble technique

combines different decision trees to increase prediction

accuracy.

 Support Vector Machines (SVM): SVM is a

supervised ML model mostly applied to data with two

classes as output [6]. An algorithm for binary

classification that locates a hyper plane to divide data

points. Apart from linear classification, they can also

perform non-linear classification efficiently. [7]

 Naive Bayes: It is a probabilistic classifier based

on Bayes theorem, which works on the primary

assumption that features are conditionally independent

[8].

https://www.mdpi.com/2071-1050/15/6/5517#B10-sustainability-15-05517

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 127

 Neural Networks: MLP can be used to address

nearly any problem, including pattern recognition,

Interpolation [9].Neurons are interconnected nodes in

multilayered networks called neural networks that are

used to learn complex patterns.

 Ensemble Methods: Combining different

models, such AdaBoost or Gradient Boosting, to produce

a more accurate predictive model.

 Several metrics, including accuracy, precision,

recall, F1-score, ROC curve, and AUC, can be used to

assess how well these algorithms work. Selecting the best

algorithm for a certain defect prediction task requires

testing out a variety of algorithms and comparing their

effectiveness. The performance and generalizability of

the selected algorithm can also be enhanced by using

techniques for hyper-parameter adjustment and model

optimization. In conclusion, feature selection, data

preprocessing, and the application of multiple

classification algorithms are all part of machine learning

techniques for defect prediction. Data preparation ensures

data quality. The data's structure and the task's unique

criteria for defect prediction determine the selection of

the best techniques.

Evaluation Metrics: The effectiveness of defect

prediction models is evaluated in large part through

evaluation metrics. They aid in evaluating how well,

accurately, and consistently the models anticipate

software faults. Following are some typical evaluation

measures for fault prediction:

Accuracy: A key indicator of how well forecasts are

made generally is accuracy. It is figured out as the

proportion of accurately predicted instances (including

true positives and true negatives) to all instances. When

working with datasets that are unbalanced and where the

majority class predominates, precision may not be

enough on its own.

Precision: When comparing all anticipated positive

instances, precision is defined as the percentage of

accurately predicted positive occurrences (also known as

faulty instances). It focuses on cutting down on false

positives, which happen when occurrences that aren't

actually defective are mistakenly labelled as such. A low

rate of false positives is suggested by a high precision.

Recall (Sensitivity or True Positive Rate): Measured by

recall, the percentage of accurately predicted positive

cases (defective instances) among all actual positive

instances. False, negatives incidents when defective

instances are mistakenly labeled as non-defective are

minimized as a main goal. A low percentage of false

negatives is suggested by a good recall.

F1-Score: A balanced evaluation statistic that takes into

accounts both false positives and false negatives are

provided by the F1-score, which is the harmonic mean of

precision and recall. It is determined by multiplying 2 by

(precision * recall) / (precision + recall). When there is an

unbalance between recall and precision, the F1-score is

helpful.

Receiver Operating Characteristic (ROC) Curve and

area Under the Curve (AUC): The true positive rate

(recall) versus the false positive rate trade-off is

graphically represented by the ROC curve. It displays

how well a classifier performs at different categorization

thresholds. The AUC denotes the region beneath the

ROC curve and offers a single value that summarizes the

overall effectiveness of the classifier. A better-

performing model has a greater AUC. These are but a

handful of instances of evaluation metrics that are applied

to defect prediction. Other metrics, like specificity,

Matthew's Correlation Coefficient (MCC), or balanced

accuracy, might also be used, depending on the task's

specific requirements. When choosing proper assessment

metrics, it is crucial to take into account the features of

the dataset and the precise objectives of the defect

prediction task. The selection should be in line with the

priorities and specifications of the software development

process. Different metrics offer different perspectives on

model performance.

Experimental setup and results: The experimental

setup for predicting software defects entails the choosing

of datasets, the machine learning algorithms, the setting

of parameters, and the assessment of model efficacy.

Here is a description of the experimental design and the

way the findings were presented:

Dataset Selection: A suitable dataset for the experiment

is chosen, consisting of historical software data with

instances labeled to indicate whether they are flawed or

not. The dataset needs to be adequate in scope and

indicative of the target software system's software

metrics.

Data Split: Training and testing sets are created from the

dataset. The testing set is used to assess the performance

and generalization skills of the machine learning models,

whereas the training set is used to train the models. To

ensure that the distribution of defective and non-defective

cases is maintained in both sets, the data can be divided

randomly or using certain methods such stratified

sampling.

Machine Learning Algorithms: Several machine

learning algorithms are chosen for the experiment based

on how well they perform fault prediction tasks. Decision

trees, random forests, support vector machines, neural

networks, or other previously discussed methods may be

among them. The methods are configured with the proper

parameters, such as the regularization parameter in

support vector machines or the number of trees in a

random forest, when they are implemented.

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 128

Performance Evaluation: The testing set is used to

assess the trained models. To evaluate the effectiveness

of the models, many evaluation metrics are produced,

including accuracy, precision, recall, F1-score, ROC

curve, and AUC. Depending on the needs, additional

metrics like specificity or MCC may also be computed.

Comparative Analysis: The outcomes of several

machine learning algorithms are contrasted and

examined. To determine which algorithms produce the

best precision/recall trade-off or the highest accuracy,

performance measurements are evaluated. Taking into

account elements like interpretability, computational

complexity, and scalability, the benefits and drawbacks

of each algorithm are explored.

Statistical Analysis: To ascertain the data' significance,

statistical analysis may be used. The validity of the

observed differences across models can be evaluated

using methods like hypothesis testing, confidence

intervals, or statistical significance tests.

RESULTS AND DISCUSSION

 The important discoveries and ideas are

highlighted in a detailed discussion of the experimental

data. Analysis is done on the variables affecting

performance, such as dataset characteristics, method

choice, and parameter tweaking. Discussions of any

intriguing findings or unexpected results offer

explanations or suggest possible directions for additional

research.

Limitations: Any restrictions on the experimental design

or the findings were addressed and acknowledged. These

restrictions could be related to the dataset's

representativeness, biases, presumptions made during the

experiment, or limits imposed by the selected machine

learning techniques. An in-depth knowledge of the

experiments that were carried out, how well the machine

learning models performed, and the consequences of the

findings are intended to be provided through the

presentation of the experimental setup and outcomes. It

helps researchers and professionals to evaluate the

efficacy of various strategies and make defensible

choices regarding the incorporation of defect prediction

techniques in software engineering processes.

Comparative Analysis: Comparative analysis in

software defect prediction compares the effectiveness of

several machine learning algorithms or methodologies in

order to determine the best strategy for doing so. A

comprehensive analysis of previous research on software

failure, emphasizing metrics, procedures and public-

private data sets, was published by C Cata et al. [10].

 The steps involved in the comparative analysis

are outlined below:

Selection of Algorithms: For comparison, a collection of

machine learning techniques is chosen, including

decision trees, random forests, support vector machines,

naive Bayes, neural networks, and ensemble approaches.

These algorithms are selected for defect prediction tasks

based on their applicability, their popularity in the

literature, or their potential to achieve high accuracy or

balanced precision-recall trade-offs.

Experimental Setup: For a fair comparison, the

experimental setup for each method uses the same dataset

and assessment measures. The dataset is divided into

training and testing sets, with the same partitions used for

both algorithm training and evaluation. To improve

performance, the hyper-parameters of the algorithms can

be adjusted using strategies like grid search or cross-

validation.

Performance Evaluation: The effectiveness of each

algorithm is assessed using the chosen evaluation

measures, such as accuracy, precision, recall, F1-score,

ROC curve, and AUC. Each algorithm's outcomes are

calculated and noted in order to derive a numerical

assessment of their predictive power.

Analysis of Results: Analyses and comparisons are made

of the outcomes of various algorithms. To ascertain

which algorithms attain the best accuracy or offer the best

precision/recall trade-off, key performance measures are

analyzed. Using the proper statistical tests, it is possible

to determine whether any detected changes are

statistically significant.

Strengths and Limitations: Strengths and Drawbacks

Based on the outcomes, the advantages and disadvantages

of each method are highlighted. The advantages could be

excellent accuracy, noise resistance, or the capacity to

manage unbalanced datasets. It's possible that the

restrictions relate to problems with interpretability,

computational complexity, or sensitivity to parameter

settings.

Interpretability and Explain ability: The algorithms'

readability and explicability are taken into account. Some

algorithms, like as naïve Bayes or decision trees, give

clear and understandable models that might shed light on

the variables influencing defect prediction. Other

algorithms may offer great predicted accuracy but lack

interpretability, such as neural networks or ensemble

approaches. Discussion is had regarding the compromise

between performance and interpretability.

Generalizability: The effectiveness of the algorithms is

evaluated by comparing them across various datasets or

software projects. Algorithms with a higher degree of

generalizability regularly outperform on a variety of

datasets.

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 129

Practical Considerations: The availability of libraries or

frameworks, scalability, computational needs, and ease of

implementation are only a few examples of practical

factors that are taken into account. These elements have

an impact on the applicability and viability of the

algorithms in actual software development settings.

Recommendations: The best suited algorithm(s) for

software defect prediction are suggested based on the

comparison study. The formulation of these

recommendations takes into accounts the advantages and

disadvantages of each algorithm as well as their trade-

offs. It is also important to consider the software

development project's particular context, requirements,

and restrictions. The comparison analysis assists

academics and industry professionals in selecting the best

machine learning algorithms for defect prediction. It

gives information about the effectiveness, advantages,

disadvantages, interpretability, and generalizability of

various methods, assisting in the selection of efficient

defect prediction methods for use in software engineering

processes.

Future Directions and Research Challenges: The

future directions and research problems in the subject of

software defect prediction can influence its development.

Here are some probable concentration points:

Incorporating Advanced Machine Learning

Techniques: Utilizing Cutting-Edge Machine Learning

Methodologies: Future studies may examine the use of

cutting-edge machine learning methods to anticipate

software defects, including deep learning, reinforcement

learning, and transfer learning. These methodologies may

find novel patterns and relationships in software data and

have demonstrated promising outcomes in a number of

disciplines.

Handling Imbalanced Data: Imbalanced datasets pose a

challenge in defect prediction, as the majority class may

overshadow the minority class, leading to biased models.

Future research can focus on developing effective

techniques for handling imbalanced data, such as

advanced sampling methods, cost-sensitive learning

approaches, or ensemble techniques specifically designed

for imbalanced datasets.

Feature Engineering and Selection: In order to foresee

defects, feature engineering is essential. Future studies

could look into novel approaches to extracting and

visualizing software metrics or introducing domain-

specific expertise into the feature engineering workflows.

Research may also concentrate on creating automated or

intelligent feature selection techniques that can pinpoint

the most pertinent and instructive features for defect

prediction.

Multi-Objective Optimization: In order to maximize

accuracy while reducing false positives or false negatives,

defect prediction frequently involves numerous

competing goals. To identify a set of solutions that

represent various trade-offs between these objectives,

future research can investigate multi-objective

optimization approaches. Decision-makers may then have

a variety of options based on their own goals and needs.

Explainable AI in Defect Prediction: In order for

stakeholders to understand and have confidence in the

prediction models, interpretability and explainability are

essential. The development of explainable AI methods

that offer open and clear insights into the elements

influencing defect prediction can be the focus of future

study. This may enhance the use and acceptability of

defect prediction models in actual applications.

Context Aware Defect Prediction: Consideration of

contextual data, such as the development environment,

team dynamics, or software process characteristics, can

improve software defect prediction even more. Future

studies can look at the impact of context on defect

prediction and create context-sensitive algorithms that

can accommodate various software development

environments.

Cross Project Defect Prediction: Utilizing information

from many software projects to improve defect prediction

performance is known as cross-project defect prediction.

In light of the heterogeneity of data and the difficulties

posed by various software domains and settings, future

research can examine efficient approaches for sharing

knowledge across projects.

Integration with Software Development Processes:
Integration with Software Development Processes: For

practical application, defect prediction must be integrated

into software development processes. The creation of

workflows, tools, and methodologies for seamless

integration that allow defect prediction models to be

integrated into current development environments can be

the focus of future study. This will enable early defect

detection and remediation.

Real-Time Defect Prediction: Real-Time defect

prediction seeks to enable ongoing monitoring and

prediction of problems during software development. The

proactive management and prevention of defects can be

enabled through future research into approaches for real-

time data collecting, processing, and prediction.

Benchmarking and Reproducibility: Securing

benchmark datasets, standardized evaluation procedures,

and the ability to reproduce findings are significant

obstacles in defect prediction research. In the future,

efforts can be directed towards developing standard

benchmark datasets and evaluation criteria, encouraging

the use of open-source software, and allowing the

comparison of results from various studies.

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 130

 In order to progress the field of software defect

prediction, it is important to address these future

directions and research problems. Doing so will result in

models that are more precise, comprehensible, and

context-aware, which will make it easier to create

software systems that are of high quality.

Conclusion: This paper focuses on software defect

prediction using machine learning techniques as a

strategy to enhance software quality and reduce

development costs. It highlights the need of proactive

defect management and draws attention to the

shortcomings of conventional methods. In addition to

presenting assessment criteria and experimental design,

the research investigates various machine learning

methods for defect prediction. It contrasts the algorithms

and examines the way forward, incorporating cutting-

edge techniques and enhancing interpretability, among

other things. In conclusion, this paper provides insightful

information on software fault prediction using machine

learning approaches. It provides useful insights into the

theoretical underpinnings, practical considerations, and

future directions of this significant research topic.

Product development teams can proactively identify and

address probable flaws by using machine learning

approaches for defect prediction, which will increase the

quality of the product and customer satisfaction.

REFERENCES

[1] Arora, I.; Tetarwal, V.; Saha (2015): A. Open

issues in software defect prediction. Procedia

Comput. Sci., 46, 906-912.

[2] I. C. Society, "IEEE 729-1983 - IEEE Standard

Glossary of Software Engineering

Terminology," 1982.

[3] W. Bi, (2013). "Research on Software Defect

Classification and Analysis," Computer Science.

[4] Grishma, B.R.; Anjali, C. (2015). Software root

cause prediction using clustering techniques: A

review. In Proceedings of the 2015 Global

Conference on Communication Technologies

(GCCT) IEEE, Red Hook, NY, USA, 23-24

April 2015; pp. 511–515.

[5] L. Macaulay, Human-computer interaction for

software designers, Itp-Media, 1995.

[6] Grishma, B.R.; Anjali, C. Software root cause

prediction using clustering techniques: A review.

In Proceedings of the 2015 Global Conference

on Communication Technologies (GCCT) IEEE,

Red Hook, NY, USA, 23–24 April 2015; pp.

511–515

[7] I. Raphael and C. Michael, "Fault links:

identifying module and fault types and their

relationship," 2004

[8] L. Meng-ren, "Research on Software Defects

Classification," Application Research of

Computers, 2004.

[9] Meiliana, S. Karim, H. L. H. S. Warnars, F. L.

Gaol, E. Abdul rahman, and B. Soewito, (2017).

Software metrics for fault prediction using

machine learning approaches: A literature

review with PROMISE repository dataset, in

2017,IEEE InternationalConference on

Cybernetics and Computational Intelligence

(CyberneticsCom), 2017, pp. 19–23.

doi:10.1109/CYBERNETICSCOM.2017.

8311708

[10] C. Catal and B. Diri. A systematic review of

software fault prediction studies, Expert Syst.

Appl., vol. 36, no. 4, pp. 7346–7354, May 2009.

doi: 10.1016/j.eswa.2008.10.027 .

