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ABSTRACT: skin disease classification using dermoscopic images is one of challenging
diagnostic process because of its visual similarities among various disease conditions, imbalance
classes of diseased images, and the unavailability of annotated data. Many of Deep learning models
have demonstrated encouraging detection performance. However, the most of Deep Learning Models
requires high computational and memory requirements, that makes their deployment difficult in
resource-constrained environments remains. In this study, we investigate an efficient convolutional
neural network-based framework for multi-class skin disease classification using MobileNetV2. This
technique is specially used for the modelling of systems for resource-constrained environments. The
proposed technique will progressively enhance the performance of the model in three stages. The
modelling will start from the baseline in initial stage and then considering data augmentation and
unfreezing the layers. In middle stage partial fine-tuning, and class weighting to address class
imbalance is considered for further improvement. Additionally, post-training quantization is used to
reduce model size and enhance deployment potential with a little trade-off in performance.
Experimental results show the improvements are moderately enhanced for performance macros across
our three training stages. Quantization were achieved for a significant memory reduction while
maintaining competitive performance of the model. This study highlights the suitability of the
proposed approach for mobile based clinical applications.
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INTRODUCTION

Skin diseases are among the most prevalent
health conditions in Pakistan as well as around the world.
Skin disease can affect individuals of all age groups.
Early detection and accurate diagnosis are very
important. Particularly some of most common and severe
conditions such as Ance, Psoriasis, Eczema, SkinCancer,
Vitiligo, where delayed detection can lead to life-
threatening consequences. Most of the traditional
diagnosis procedures rely on expert dermatological
assessment, which is a time-consuming and costly
process. Expert dermatologists may be inaccessible in
low-resource settings and in rural areas.

Recent research in deep learning, and advanced
convolutional neural networks (CNNs)[1-2], have
significantly improved and eased the automatic medical
image analysis mechanism. However, designing and
training efficient deep learning networks from scratch
needs a large amount of annotated datasets. It also
requires high computational resources and memory,
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which may be limited in medical environments. The
transfer learning technique is an effective way to extract
meaningful features from limited datasets [3].

For real world applications many of deep
learning models are impractical for their deployment in
resource-constrained environments. Their deployment is
difficult due to large model size and high inference
latency. It can be made deployable if the model sized is
reduced. This motivates the researchers to explore
lightweight architectures and model compression
techniques that may be suitable for resource-constrained
environments. In this study, we focus on MobileNetV2,
which is a lightweight CNN based optimization technique
for mobile environments. We investigate its effectiveness
for skin disease classification in multiple stages. We
further applied post-training quantization to enhance its
deployment efficiency without significantly
compromising on models performance.

Related Work: Deep learning-based skin disease
classification techniques have been widely explored in
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recent years. Some of the past researchers have reported
the utilization of handcrafted features and use of
conventional classifiers. With the advancement of CNNs
many of versatile architectures have been reported in
recent literature. The CNN based architectures such as
VGGNet, ResNet, DenseNet, and many other have
achieved strong performance on dermoscopic datasets.
However, these models often require substantial
computational resources [4].

The advanced techniques enable us to use pre-
trained models to adjust to medical imaging tasks with
limited data. Although it may raise the risk of overfitting,
several studies show that fine-tuning deeper layers
enhances task-specific representation. In skin disease
datasets, class imbalance remains an issue that results in
predictions which can be skewed toward major classes
having more data for tuning.

Using a custom dataset, Aishwarya and
Gomathy classified ten different types of skin diseases
using ResNet architectures. They reported training and
testing accuracies above 98% and demonstrated the
model's ability to capture discriminative lesion patterns
because of its deep residual connections. [5]

M. Akter et al have shown ResNet variants such
as ResNet50 and ResNetl01 to achieve competitive
performance when distinguishing between malignant and
benign skin lesions. These variants have shown
outperforming stats compared to traditional CNN
frameworks [6].

Dermatological datasets often have a significant
imbalance between multiple classes. The imbalance can
degrade the performance of classification models. Many
studies have shown that models trained without
compensation mechanisms can give a skewed response in
favor of the major classes. To resolve this issue, many
strategies have been reported in literature like class
weighting, data augmentation, and adapted loss functions
[7].

Howard et al., discussed that lightweight CNN
architectures, such as MobileNet, have been widely
adopted for skin lesion classification due to their low
computational cost. Through the use of depth-separable
convolutions, these models offer a good balance between
accuracy and efficiency, making them suitable for
embedded and mobile digital health applications [8].

Pan et al reported that Transfer learning is
widely used to improve model performance on limited
medical datasets. By initializing networks with weights
pre-trained on large datasets and then progressively
refining them, models can learn more robust
representations. This approach reduces overfitting and
improves overall classification performance [9].

Recently MobileNet architectures have been
widely reported for skin disease classification.
MobileNet got attention of many of researchers due to its
lightweight structure and efficient deployment enabling
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capacity on resource-constrained devices. Chaturvedi et
al. proposed a seven-way automated multi-class skin
cancer classification system. They used a pre-trained
MobileNet model on the HAM10000 dataset. The
reported model achieved high weighted average
precision, recall, and F1-score values about 0.83 [10].

Further work on MobileNet-based classification
has explored combining the MobileNet backbone with
advanced feature mechanisms. MobileNet-V2 with
attention blocks and atrous spatial pyramid pooling
(ASPP) has shown improved discrimination of contextual
information among skin disease datasets. The results have
shown the validation for possible utility of MobileNet in
both generalization and mobile deployment of skin
disease detection systems [11]. for deployment on
resource-constrained devices model quantization has
been discussed for making lightweight architectures using
MobileNet. These model can be more suitable for real
world applications deployment because of reduced model
size and computational cost. For example, the
Quantization  Friendly MobileNet (QF-MobileNet)
framework proposes architectural optimizations that
address redundancy and quantization loss inherent in
baseline MobileNet models. The Quantization results in
significant reductions of tunable parameters, as well as it
also reduces inference time with minimal degradation in
accuracy after quantization. This approach makes the
architecture more efficient for embedded applications on
smartphones and low hardware devices [12].

METHODOLOGY

The figure 1 shows the research methodology
framework for this research work. Publically available
skin disease dataset was acquired from Kaggle. The
dataset was quite with total of 21 disease classes, so we
planned to train the model on limited classes of diseases.
Then top five disease classes were selected for model
training. The model MobileNet V3 was adopted for
training, as this is the lightweight model that can be
quantized and performs well under the constrained
hardware resources. The training was performed in three
stages.

Dataset  Description and  Preprocessing:  The
experiments are conducted on a publicly available skin
disease image dataset containing multiple dermatological
conditions. The dataset consists of RGB images
categorized into distinct disease classes. There were 21
diseased classes and 1 normal class, in original dataset.
However, classes were widely imbalanced. For this
research work we decided to select to choose five disease
classes which were nearly balance and as well as these
were most important diseased for which early detection is
favorable. Additionally, one normal class were also
considered. So the total of 6 classes were used to train the



model. Figure 2 shows sample images of five selected

diseased classes.
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The dataset is organized into training, validation,
and test splits as per most of the practice reported in
research. Then, for preprocessing Images are resized to a
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Model  Architecture and  Training  Strategy:
MobileNetV2 is selected as the base architecture due to its
lightweight design and efficiency. The pre-trained
weights on ImageNet are utilized to initialize the model. It
is designed for efficient on-device vision applications.
MobileNetV2 architecture consists of 53 convolutional
layers. Its Initial layers perform a standard 3x3
convolution with 32 filters and stride. The its Bottleneck
Layers have a series of 19 residual bottleneck blocks with
varying expansion factors, output channels, and strides.
The final Layers of MobileNetV2 have a 1x1 convolution

(1280 filters), a Global Average Pooling layer, and a final
fully connected layer for classification. MobileNetV2’s
lower layers are generally used to detect simple features
like edges and corners. Whereas the model's upper layers
are designed to foresee the complex features and patterns.

Initially MobileNetV2 applies a single filter per
input channel and all m channels are convolved
independently with its own k x k kernel for depth wise
filtering. Model architecture can be represented as shown
in figure 3:

Model Structure

[N IN

iMage el .« ..

MobileNet base network

Ance

- prediction

classifier head

Figure 3: Model Structure Architecture of Proposed Methodology

Its mathematical expressions can be presented as:

Odw(f,j, m) = Z Wk,f,m . I?i+k,j+f,m

LX)

1)

Then a 1x1 convolution is used to combine all the depth wise outputs into new features, that can be represented as:

Opw(iaj$ n) = Z Wn,m : Odw(i?jv m)

To systematically enhance the performance, a training
process has been conducted in three progressive stages,
as shown in Table 1:

Table 1: Description of Stage wise Training Strategy

Stage Description

Stage 1  Baseline MobileNetV2

Stage 2  + Data Augmentation + Partial Fine-Tuning
Stage 3  + Class Weighting + Controlled Fine-Tuning

Stage 1: Baseline Model: The MobileNetV2 backbone is
frozen, and only the classification head is trained. The
freezing is done to avoid model overfitting and making it
faster to safely learn underlying patterns by using pre-
learned knowledge. The stage 1 training was performed
for 12 epochs, whereas subsequent fine-tuning stages
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e.g., 2 and 3, were trained for fewer epochs to prevent
overfitting and preserve learned representations

Stage 2: Data Augmentation and Partial Fine-Tuning:
In our second stage of model training we used data
augmentation techniques, like rotation, flipping, and
zooming of images so that generalization can be enhance
for better results. In this stage the upper layers of the
backbone were also made unfrozen so that the task-
specific features may also be adopted and learned. Stage
2 training was carried out for 10 epochs.

Stage 3: Class Weighting and Fine-Tuning: In our
Stage 3 we introduced class weights so that imbalance of
classes may be adjusted. In this process minority classes
having less data are emphasized during the training
process. Fine-tuning is also performed using a low
learning rate, so that a stabilize optimization can be
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achieved. Stage 3 training was terminated earlier at 8"
epoch.

Finally, to improve the deployment efficiency of
model, post-training quantization technique is applied to
convert the trained model from 32-bit floating-point
precision to 8-bit integer representation. This process
reduces the model size and memory utilization, to make
its deployment convenient for the edge and mobile based
devices.

RESULTS AND DISCUSSION

Stage-Wise Training Performance Analysis: Figure 4
shows the epoch-wise comparison of training accuracies,
loss, precision, and recall for our trained model during
the three training stages. At Stage-1 the MobileNetV2
backbone was trained in which some of the convolutional
layers were left frozen to retain generic features of our
pre trained model. No additional optimization strategy
was considered in stage 1, the model shows a steady
increase in performance with running epochs. In this
stage, the convergence was slower and final training
accuracy remains lower compared to later stages. The

baseline representation of skin disease patterns was
established in this stage.

In Stage-2, we noticed an improvement in all
metrics after data augmentation and partial unfreezing of
layers were introduced. Training accuracy, precision, and
recall increased, whereas the loss decreases rapidly on
running early epochs. The decrease in loss represents fast
convergence and improved feature learning. These results
confirmed that the data augmentation enhanced the
model’s robustness changes in skin lesion appearance.
The process of unfreezing the layers enables better
adaptation of high-level features in dataset.

Stage-3, which incorporates class weighting and
fine-tuning, achieves the highest overall performance,
demonstrating the most stable and consistent learning
trends. The further improved precision and recall in this
stage 3 were observed due to better handling of
imbalanced classes and minority disease categories. The
class weighting and fine-tuning significantly improvised
the results.

The progressive stages wise improvement in
training results validates the effectiveness of the proposed
training strategy.
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Figure 4: Epoch wise Training Results for all Stages
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Stage-Wise Validation Performance Analysis: The
figure 5 shows the validation results, a progressive
impact of our proposed stage-wise training on model
generalization can be visualize from these graphs. The
model achieved a moderately stable validation accuracy
and precision during stage 1 at baseline learning and
frozen feature extractors. Then a higher validation loss
and fluctuations were observed in beginning of Stage-2
training due to layer unfreezing of layers and increased
model flexibility. However, after training few epochs,
progressive improvement was achieved in validation

accuracy, precision, and recall. The progressive
improvement suggests the better adaptation of task-
specific skin disease features. The Stage-3 shows a
balanced validation performance, with consistently higher
recall. This reflects the effectiveness of class weighting
and fine-tuning to address the imbalance among classes
for better recognition. The overall validation curves of all
three stages confirm that the stage-wise training strategy
has enhanced the generalization and also controlled the
overfitting. This has led to a more robust and clinically
enhanced classification model.
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Figure 5: Epoch wise Validation Results for all Stages

Confusion Matrix Analysis: Confusion matrix shown in
figure 6, reveal a reduced misclassification among
visually similar diseases as training progresses. Notably,
recall for clinically critical classes improves after
applying class weighting, highlighting the effectiveness
of imbalance handling strategies.

Figure 7 shows progressive improvements across training
stages. The macro-averaged accuracy, precision, recall,
and F1-score increase consistently, indicating improved
robustness across classes.

Statistical Significance Analysis: Finally, paired t-tests
were conducted on epoch-wise validation metrics, to

136

validate that the observed performance improvements
across training stages of our model were statistically
correct. The table show that the transition from Stage-1 to
Stage-2 and then from Stage 2 to Stage-3 vyields
statistically significant gains (p < 0.05). This confirms the
effectiveness of progressive fine-tuning of our model in
three stages. Furthermore, bootstrap-based confidence
interval of Cl= 95% shows a consistent mean
improvement in validation accuracy from Stage-1 to
Stage-3. These stage wise findings demonstrate that our
proposed strategy leads to a reliable and robust
performance  improvement rather than random
fluctuations.
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Table 2: Statistical Significance Analysis:
Metric Comparison t-value p-value Significance
vVal Accurac Stage 2 vs Stage 1 —3.5609 0.0092 Significant
y Stage 3 vs Stage 2 5.8462 0.0006 Highly Significant
val Precision Stage 2 vs Stage 1 —4.6456 0.0024 Significant
Stage 3 vs Stage 2 8.3865 0.0001 Highly Significant

Quantized vs Non-Quantized Model Performance: The
figure 8 show quantized model exhibits only a minor 3 to
5 percent reduction in performance compared to the non-
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quantized version, while achieving substantial model size
reduction. This trade-off is acceptable for real-world
deployment scenarios.
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Impact of Quantization on Model Performance
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Conclusion and Future Work: This paper presents an
efficient skin disease classification framework using
MobileNetV2, progressive fine-tuning, class weighting,
and post-training quantization. The proposed stage wise
approach achieved balanced performance improvements
while significantly reducing model size, enabling
deployment in resource-constrained environments.

Experimental results of model training in three
stages have shown a consistent improvement in training
and validation metrics. The validation accuracy,
precision, recall, and F1-score were enhanced with
strategical fine-tuning, class weighting and un freezing of
layer during training stages. The significance analysis
using paired t-tests and confidence intervals were also
conducted, that  confirmed the  performance
improvements, from Stage-1 to Stage-1 and then form
Stage-2 to Stage-3, are not due to some random variation.
This shows that a meaningful learning improvements
were achieved with proposed methodology. Despite the
lightweight nature of MobileNet-V2, the proposed
approach  achieved competitive and  enhanced
performance. So the proposed methodology makes it
suitable for resource-constrained environments such as
edge and mobile deployments.

Future work will focus on incorporating
attention mechanisms, exploring lightweight
segmentation-assisted pipelines, and validating the model
on cross-dataset clinical benchmarks.
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