
Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025) 

 131 

OPTIMIZATION OF DEEP LEARNING BASED LIGHT WEIGHT SKIN DISEASE 

CLASSIFICATION MODEL USING TRANSFER LEARNING AND MODEL 

QUANTIZATION FOR RESOURCE-CONSTRAINED ENVIRONMENTS 

W. Azeem
1
, M. U. Ahmad

2
, T. Ahamd

3
, A. Farooq

3
, A. I. Mirza

2
 and I. Shahzadi

2
 

1
Department of Informatics and Systems, School of Systems and Technology, University of Management and 

Technology (UMT), Lahore 
2
Institute of Data Science, University of Engineering and Technology (UET), Lahore 

3
Department of Computer Science, University of Engineering and Technology (UET), Lahore 

Corresponding Author Email: amjad.farooq@uet.edu.pk 

ABSTRACT: Skin disease classification using dermoscopic images is one of challenging 

diagnostic process because of its visual similarities among various disease conditions, imbalance 

classes of diseased images, and the unavailability of annotated data. Many of Deep learning models 

have demonstrated encouraging detection performance. However, the most of Deep Learning Models 

requires high computational and memory requirements, that makes their deployment difficult in 

resource-constrained environments remains. In this study, we investigate an efficient convolutional 

neural network-based framework for multi-class skin disease classification using MobileNetV2. This 

technique is specially used for the modelling of systems for resource-constrained environments. The 

proposed technique will progressively enhance the performance of the model in three stages. The 

modelling will start from the baseline in initial stage and then considering data augmentation and 

unfreezing the layers. In middle stage partial fine-tuning, and class weighting to address class 

imbalance is considered for further improvement. Additionally, post-training quantization is used to 

reduce model size and enhance deployment potential with a little trade-off in performance. 

Experimental results show the improvements are moderately enhanced for performance macros across 

our three training stages. Quantization were achieved for a significant memory reduction while 

maintaining competitive performance of the model. This study highlights the suitability of the 

proposed approach for mobile based clinical applications.  
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INTRODUCTION 

 Skin diseases are among the most prevalent 

health conditions in Pakistan as well as around the world. 

Skin disease can affect individuals of all age groups. 

Early detection and accurate diagnosis are very 

important. Particularly some of most common and severe 

conditions such as Ance, Psoriasis, Eczema, SkinCancer, 

Vitiligo, where delayed detection can lead to life-

threatening consequences. Most of the traditional 

diagnosis procedures rely on expert dermatological 

assessment, which is a time-consuming and costly 

process. Expert dermatologists may be inaccessible in 

low-resource settings and in rural areas. 

 Recent research in deep learning, and advanced 

convolutional neural networks (CNNs)[1-2], have 

significantly improved and eased the automatic medical 

image analysis mechanism. However, designing and 

training efficient deep learning networks from scratch 

needs a large amount of annotated datasets. It also 

requires high computational resources and memory, 

which may be limited in medical environments. The 

transfer learning technique is an effective way to extract 

meaningful features from limited datasets [3]. 

 For real world applications many of deep 

learning models are impractical for their deployment in 

resource-constrained environments. Their deployment is 

difficult due to large model size and high inference 

latency. It can be made deployable if the model sized is 

reduced. This motivates the researchers to explore 

lightweight architectures and model compression 

techniques that may be suitable for resource-constrained 

environments. In this study, we focus on MobileNetV2, 

which is a lightweight CNN based optimization technique 

for mobile environments. We investigate its effectiveness 

for skin disease classification in multiple stages. We 

further applied post-training quantization to enhance its 

deployment efficiency without significantly 

compromising on models performance. 

Related Work: Deep learning-based skin disease 

classification techniques have been widely explored in 
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recent years. Some of the past researchers have reported 

the utilization of handcrafted features and use of 

conventional classifiers. With the advancement of CNNs 

many of versatile architectures have been reported in 

recent literature. The CNN based architectures such as 

VGGNet, ResNet, DenseNet, and many other have 

achieved strong performance on dermoscopic datasets. 

However, these models often require substantial 

computational resources [4]. 

 The advanced techniques enable us to use pre-

trained models to adjust to medical imaging tasks with 

limited data. Although it may raise the risk of overfitting, 

several studies show that fine-tuning deeper layers 

enhances task-specific representation. In skin disease 

datasets, class imbalance remains an issue that results in 

predictions which can be skewed toward major classes 

having more data for tuning.  

 Using a custom dataset, Aishwarya and 

Gomathy classified ten different types of skin diseases 

using ResNet architectures. They reported training and 

testing accuracies above 98% and demonstrated the 

model's ability to capture discriminative lesion patterns 

because of its deep residual connections. [5] 

 M. Akter et al have shown ResNet variants such 

as ResNet50 and ResNet101 to achieve competitive 

performance when distinguishing between malignant and 

benign skin lesions. These variants have shown 

outperforming stats compared to traditional CNN 

frameworks [6].  

 Dermatological datasets often have a significant 

imbalance between multiple classes. The imbalance can 

degrade the performance of classification models. Many 

studies have shown that models trained without 

compensation mechanisms can give a skewed response in 

favor of the major classes. To resolve this issue, many 

strategies have been reported in literature like class 

weighting, data augmentation, and adapted loss functions 

[7]. 

 Howard et al., discussed that lightweight CNN 

architectures, such as MobileNet, have been widely 

adopted for skin lesion classification due to their low 

computational cost. Through the use of depth-separable 

convolutions, these models offer a good balance between 

accuracy and efficiency, making them suitable for 

embedded and mobile digital health applications [8]. 

 Pan et al reported that Transfer learning is 

widely used to improve model performance on limited 

medical datasets. By initializing networks with weights 

pre-trained on large datasets and then progressively 

refining them, models can learn more robust 

representations. This approach reduces overfitting and 

improves overall classification performance [9]. 

 Recently MobileNet architectures have been 

widely reported for skin disease classification.  

MobileNet got attention of many of researchers due to its 

lightweight structure and efficient deployment enabling 

capacity on resource-constrained devices. Chaturvedi et 

al. proposed a seven-way automated multi-class skin 

cancer classification system. They used a pre-trained 

MobileNet model on the HAM10000 dataset. The 

reported model achieved high weighted average 

precision, recall, and F1-score values about 0.83 [10].  

 Further work on MobileNet-based classification 

has explored combining the MobileNet backbone with 

advanced feature mechanisms. MobileNet-V2 with 

attention blocks and atrous spatial pyramid pooling 

(ASPP) has shown improved discrimination of contextual 

information among skin disease datasets. The results have 

shown the validation for possible utility of MobileNet in 

both generalization and mobile deployment of skin 

disease detection systems [11]. for deployment on 

resource-constrained devices model quantization has 

been discussed for making lightweight architectures using 

MobileNet. These model can be more suitable for real 

world applications deployment because of reduced model 

size and computational cost. For example, the 

Quantization Friendly MobileNet (QF-MobileNet) 

framework proposes architectural optimizations that 

address redundancy and quantization loss inherent in 

baseline MobileNet models. The Quantization results in 

significant reductions of tunable parameters, as well as it 

also reduces inference time with minimal degradation in 

accuracy after quantization. This approach makes the 

architecture more efficient for embedded applications on 

smartphones and low hardware devices [12].  

METHODOLOGY 

 The figure 1 shows the research methodology 

framework for this research work.  Publically available 

skin disease dataset was acquired from Kaggle. The 

dataset was quite with total of 21 disease classes, so we 

planned to train the model on limited classes of diseases. 

Then top five disease classes were selected for model 

training. The model MobileNet V3 was adopted for 

training, as this is the lightweight model that can be 

quantized and performs well under the constrained 

hardware resources. The training was performed in three 

stages. 

Dataset Description and Preprocessing: The 

experiments are conducted on a publicly available skin 

disease image dataset containing multiple dermatological 

conditions. The dataset consists of RGB images 

categorized into distinct disease classes. There were 21 

diseased classes and 1 normal class, in original dataset. 

However, classes were widely imbalanced.  For this 

research work we decided to select to choose five disease 

classes which were nearly balance and as well as these 

were most important diseased for which early detection is 

favorable. Additionally, one normal class were also 

considered. So the total of 6 classes were used to train the 
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model. Figure 2 shows sample images of five selected 

diseased classes.  

 The dataset is organized into training, validation, 

and test splits as per most of the practice reported in 

research. Then, for preprocessing Images are resized to a 

fixed resolution that is compatible with MobileNetV2 

input requirements. For this study we did not perform 

manual segmentation to allow the model learn 

discriminative features directly from raw images. 

 

 
Figure 1: Framework of research methodology 

 

 
Figure 2: Sample Images of Selected Disease Classes 
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Model Architecture and Training Strategy: 
MobileNetV2 is selected as the base architecture due to its 
lightweight design and efficiency. The pre-trained 
weights on ImageNet are utilized to initialize the model. It 
is designed for efficient on-device vision applications. 
MobileNetV2 architecture consists of 53 convolutional 
layers. Its Initial layers perform a standard 3x3 
convolution with 32 filters and stride. The its Bottleneck 
Layers have a series of 19 residual bottleneck blocks with 
varying expansion factors, output channels, and strides. 
The final Layers of MobileNetV2 have a 1x1 convolution 

(1280 filters), a Global Average Pooling layer, and a final 
fully connected layer for classification. MobileNetV2’s 
lower layers are generally used to detect simple features 
like edges and corners. Whereas the model's upper layers 
are designed to foresee the complex features and patterns.  
 Initially MobileNetV2 applies a single filter per 

input channel and all m channels are convolved 

independently with its own k x k kernel for depth wise 

filtering. Model architecture can be represented as shown 

in figure 3: 

 

 
Figure 3: Model Structure Architecture of Proposed Methodology 

Its mathematical expressions can be presented as:        

         

             (1) 

 

Then a 1x1 convolution is used to combine all the depth wise outputs into new features, that can be represented as:  

 

             (2) 

 

 

To systematically enhance the performance, a training 

process has been conducted in three progressive stages, 

as shown in Table 1: 

 

Table 1: Description of Stage wise Training Strategy 

 

Stage Description 

Stage 1 Baseline MobileNetV2 

Stage 2 + Data Augmentation + Partial Fine-Tuning 

Stage 3 + Class Weighting + Controlled Fine-Tuning 

 

Stage 1: Baseline Model: The MobileNetV2 backbone is 

frozen, and only the classification head is trained. The 

freezing is done to avoid model overfitting and making it 

faster to safely learn underlying patterns by using pre-

learned knowledge. The stage 1 training was performed 

for 12 epochs, whereas subsequent fine-tuning stages 

e.g., 2 and 3, were trained for fewer epochs to prevent 

overfitting and preserve learned representations 

Stage 2: Data Augmentation and Partial Fine-Tuning: 
In our second stage of model training we used data 

augmentation techniques, like rotation, flipping, and 

zooming of images so that generalization can be enhance 

for better results. In this stage the upper layers of the 

backbone were also made unfrozen so that the task-

specific features may also be adopted and learned. Stage 

2 training was carried out for 10 epochs.  

Stage 3: Class Weighting and Fine-Tuning: In our 

Stage 3 we introduced class weights so that imbalance of 

classes may be adjusted. In this process minority classes 

having less data are emphasized during the training 

process. Fine-tuning is also performed using a low 

learning rate, so that a stabilize optimization can be 
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achieved. Stage 3 training was terminated earlier at 8
th

 

epoch.  

 Finally, to improve the deployment efficiency of 

model, post-training quantization technique is applied to 

convert the trained model from 32-bit floating-point 

precision to 8-bit integer representation. This process 

reduces the model size and memory utilization, to make 

its deployment convenient for the edge and mobile based 

devices.  

RESULTS AND DISCUSSION 

Stage-Wise Training Performance Analysis: Figure 4 

shows the epoch-wise comparison of training accuracies, 

loss, precision, and recall for our trained model during 

the three training stages. At Stage-1 the MobileNetV2 

backbone was trained in which some of the convolutional 

layers were left frozen to retain generic features of our 

pre trained model. No additional optimization strategy 

was considered in stage 1, the model shows a steady 

increase in performance with running epochs. In this 

stage, the convergence was slower and final training 

accuracy remains lower compared to later stages. The 

baseline representation of skin disease patterns was 

established in this stage. 

 In Stage-2, we noticed an improvement in all 

metrics after data augmentation and partial unfreezing of 

layers were introduced. Training accuracy, precision, and 

recall increased, whereas the loss decreases rapidly on 

running early epochs. The decrease in loss represents fast 

convergence and improved feature learning. These results 

confirmed that the data augmentation enhanced the 

model’s robustness changes in skin lesion appearance. 

The process of unfreezing the layers enables better 

adaptation of high-level features in dataset.   

 Stage-3, which incorporates class weighting and 

fine-tuning, achieves the highest overall performance, 

demonstrating the most stable and consistent learning 

trends. The further improved precision and recall in this 

stage 3 were observed due to better handling of 

imbalanced classes and minority disease categories. The 

class weighting and fine-tuning significantly improvised 

the results. 

 The progressive stages wise improvement in 

training results validates the effectiveness of the proposed 

training strategy. 

 

 
Figure 4: Epoch wise Training Results for all Stages 
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Stage-Wise Validation Performance Analysis: The 

figure 5 shows the validation results, a progressive 

impact of our proposed stage-wise training on model 

generalization can be visualize from these graphs. The 

model achieved a moderately stable validation accuracy 

and precision during stage 1 at baseline learning and 

frozen feature extractors. Then a higher validation loss 

and fluctuations were observed in beginning of Stage-2 

training due to layer unfreezing of layers and increased 

model flexibility. However, after training few epochs, 

progressive improvement was achieved in validation 

accuracy, precision, and recall. The progressive 

improvement suggests the better adaptation of task-

specific skin disease features. The Stage-3 shows a 

balanced validation performance, with consistently higher 

recall. This reflects the effectiveness of class weighting 

and fine-tuning to address the imbalance among classes 

for better recognition. The overall validation curves of all 

three stages confirm that the stage-wise training strategy 

has enhanced the generalization and also controlled the 

overfitting. This has led to a more robust and clinically 

enhanced classification model. 

 

 
Figure 5: Epoch wise Validation Results for all Stages 

 
Confusion Matrix Analysis: Confusion matrix shown in 

figure 6, reveal a reduced misclassification among 

visually similar diseases as training progresses. Notably, 

recall for clinically critical classes improves after 

applying class weighting, highlighting the effectiveness 

of imbalance handling strategies. 

Figure 7 shows progressive improvements across training 

stages. The macro-averaged accuracy, precision, recall, 

and F1-score increase consistently, indicating improved 

robustness across classes. 

Statistical Significance Analysis: Finally, paired t-tests 

were conducted on epoch-wise validation metrics, to 

validate that the observed performance improvements 

across training stages of our model were statistically 

correct. The table show that the transition from Stage-1 to 

Stage-2 and then from Stage 2 to Stage-3 yields 

statistically significant gains (p < 0.05). This confirms the 

effectiveness of progressive fine-tuning of our model in 

three stages. Furthermore, bootstrap-based confidence 

interval of CI= 95% shows a consistent mean 

improvement in validation accuracy from Stage-1 to 

Stage-3. These stage wise findings demonstrate that our 

proposed strategy leads to a reliable and robust 

performance improvement rather than random 

fluctuations. 
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Figure 6: Confusion Matrix of Final Stage 

 

 
Figure 7: Overall Performance Comparison 

Table 2: Statistical Significance Analysis: 
 

Metric Comparison t-value p-value Significance 

Val Accuracy 
Stage 2 vs Stage 1 −3.5609 0.0092 Significant 

Stage 3 vs Stage 2 5.8462 0.0006 Highly Significant 

Val Precision 
Stage 2 vs Stage 1 −4.6456 0.0024 Significant 

Stage 3 vs Stage 2 8.3865 0.0001 Highly Significant 
 

Quantized vs Non-Quantized Model Performance: The 

figure 8 show quantized model exhibits only a minor 3 to 

5 percent reduction in performance compared to the non-

quantized version, while achieving substantial model size 

reduction. This trade-off is acceptable for real-world 

deployment scenarios. 
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Figure 8: Impact of model quantization of performance metrics 

 
Conclusion and Future Work: This paper presents an 

efficient skin disease classification framework using 

MobileNetV2, progressive fine-tuning, class weighting, 

and post-training quantization. The proposed stage wise 

approach achieved balanced performance improvements 

while significantly reducing model size, enabling 

deployment in resource-constrained environments. 

 Experimental results of model training in three 

stages have shown a consistent improvement in training 

and validation metrics. The validation accuracy, 

precision, recall, and F1-score were enhanced with 

strategical fine-tuning, class weighting and un freezing of 

layer during training stages. The significance analysis 

using paired t-tests and confidence intervals were also 

conducted, that confirmed the performance 

improvements, from Stage-1 to Stage-1 and then form 

Stage-2 to Stage-3, are not due to some random variation. 

This shows that a meaningful learning improvements 

were achieved with proposed methodology. Despite the 

lightweight nature of MobileNet-V2, the proposed 

approach achieved competitive and enhanced 

performance. So the proposed methodology makes it 

suitable for resource-constrained environments such as 

edge and mobile deployments. 

 Future work will focus on incorporating 

attention mechanisms, exploring lightweight 

segmentation-assisted pipelines, and validating the model 

on cross-dataset clinical benchmarks. 
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