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ABSTRACT: Agile development involves rapid and dynamic regression testing to ensure that it 

keeps pace with the frequent code changes and continuous integration. The traditional methods of test 

case prioritization (TCP) rely on static historical data and thus cannot handle noisy logs, changing test 

behavior, and inconsistent failure modes typical of Agile systems. In this paper, the authors describe a 

hybrid approach to prioritization based on the combination of DBSCAN clustering and Q-learning as 

the means of overcoming the two challenges, namely the quality of data and adaptability. DBSCAN 

groups similar test cases and removes noise and Q-learning is used to train an execution order in each 

cluster using a reward function balancing early fault detection and cost of execution. A mixed dataset 

of approximately 15,000 test executions of both Defects4J and real CI pipeline are used to test the 

model. Findings indicate that the given strategy attains an accuracy of 90.5 percent, APFD of 0.87, and 

a decrease in the overall testing time of 28 percent, which outperform the Random, Greedy, and 

DeepOrder baselines. It is lightweight and scalable with an easy deployment into CI/CD pipelines, 

which makes it highly applicable in the contemporary Agile testing process. 

Keywords: Test Case Prioritization, Agile Software Development, DBSCAN Clustering, Reinforcement Learning, 
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INTRODUCTION 

 The use of agile software development 

methodologies is the main foundation of contemporary 

software development and offers an adaptable and 

iterative approach to delivering as well as developing 

software systems. The experience of Extreme 

Programming (XP), Scrum, and Kanban allow 

development teams to adapt to changing customer needs, 

streamline the process of creating the product, and sustain 

the feedback with the help of the software development 

life cycle. Although Agile approaches are versatile, they 

do pose greater problems in terms of quality assurance 

where regression testing is concerned. The regular code 

changes, the frequent integration and deployment 

(CI/CD), and the short development cycles put an 

increased burden on the testing cycle, and the regression 

testing is one of the most time-consuming parts of the 

Agile workflow. 

 Among these challenges, test case prioritization 

is one of the major problem of Agile environment. This 

study aligns with the emerging trend of integrating hybrid 

machine learning and reinforcement techniques into Agile 

test optimization. The process of determining the 

optimum sequence for executing test cases to identify 

defects early while minimizing the usage of time and 

resources. However, traditional TCP methods of testing 

case prioritization, such as random ordering, rule-of-

thumb code coverage, or using historical test results, are 

ineffective in the Agile environment. These methods tend 

to be founded on fixed data, such as the failures that have 

been experienced in the past or the opinion of experts, 

and do not scale with the evolving lifetime of systems, 

time-varying trends, and new tests. 

 These fixed methods, in turn, result in 

unnecessary testing, long-term fault detection, increased 

testing time, and the revelation of serious quality flaws in 

the production process. 

 Agile projects further complicate TCP due to 

incomplete or noisy test logs, flaky test results, and 

inconsistent execution patterns. These issues undermine 

the performance of static test prioritization methods. In 

order to overcome these drawbacks, recent studies are 

considering predictive analytics and machine learning 

(ML) as smart, data-driven methodologies of test case 

prioritization. Predictive analytics models are trained on 

historical data, code changes, defect trends, and other test 

metrics to identify the patterns and estimate the 

possibility of defects for a particular test scenario. 

Techniques such as gradient boosting, deep neural 

networks, and random forests have shown improvement 

in fault detection efficiency by learning fault-relevant 

patterns dynamically. Nevertheless, these models 

typically assume clean, labeled data and are usually 
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trained offline, thus did not perform well in Agile 

environments where data quality is not always high and 

adjustments to decision making needed to be possible in 

real time. 

 Although ML-based models follow supervised 

learning paradigms requiring extensive labeled data, this 

is often unavailable for Agile projects. They also lack 

adaptability to real-time project changes, limiting their 

scalability and responsiveness. Thus, there still exists a 

dire need to have a smart TCP that is flexible, robust 

against the associated noise, and scalable over dynamic 

project conditions. Given these limitations, there was a 

need for a model that can learn adaptively from noisy, 

dynamic data and optimize test case selection in real 

time. 

 To address these challenges, this study proposes 

a hybrid test case prioritization framework that deals with 

the dual problem of data quality and adaptability in Agile 

TCP, combining unsupervised clustering (DBSCAN) and 

reinforcement learning (Q-learning). The proposed model 

integrates clustering-based data preprocessing with 

adaptive reinforcement learning to achieve both 

robustness and adaptability. As illustrated in Figure 1, the 

workflow of the proposed hybrid model integrates 

clustering and reinforcement learning for test case 

prioritization.

 
Figure 1: Working Principle of the Hybrid Model for Test Case Prioritization 

 

 Figure 1 illustrates the complete working 

process of the proposed hybrid model for test case 

prioritization. The workflow starts with data gathering of 

Agile projects which comprises of test cases execution 

logs, code change, defect reports and historical outcomes. 

The preprocessing is then used to clean up noisy or 

incomplete data. Analysis feature engineering identifies 

such meaningful measures like code churn, defect rate, 

and pass/fail history. 

 DBSCAN clustering is then used to consider 

similar test cases as dense clusters and outliers, i.e. flaky 

tests. This step makes sure that the input is structured and 

high quality such that it can be prioritized without being 

labeled manually. After clustering has been done, the Q-

learning agent continuously engages with the testing 

environment. In every step, it picks a test case out of the 

cluster, gets feedback on the cost of detecting defect and 

cost of executing the test cases and revise its decision 

policy. In several episodes, the agent is informed of a 

good prioritization order which results in early fault 

detection and the minimum time taken to execute. Lastly, 

the evaluation of prioritized results is done through 

accuracy, APFD, NAPFD, and reduction of execution 

time, and the product can be directly integrated into 

CI/CD pipelines to be used in real-time. 

This research aim as follows. 

• Create a hybrid ML framework of dynamic TCP 

in an Agile environment. 

• Use multi-feature data (code changes, defect 

history, execution metrics) for strong test case 

prioritization. 

• Measure performance with accuracy, APFD, 

NAPFD and reduction of the time used in 

testing. 

• Make scaling and Agile CI/CD pipeline 

integration possible. 
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By proposing this hybrid solution, the study contributes 

to the field in several ways: 

• Proposed a hybrid model by connecting 

DBSCAN clustering and Q-learning for test case 

prioritization. 

• Processed noisy and inconsistent test data using 

density-based clustering techniques. 

• Select dynamic test cases through reinforcement 

learning with a reward-driven strategy. 

• Use multi-feature inputs to improve fault 

prediction accuracy and adaptability. 

• Obtained high accuracy, APFD, and test time 

reduction over baseline methods. 

• Tested the model on large-scale Agile and open-

source benchmark data. 

• Developed the framework for real-time 

integration into CI/CD pipelines 

 This study is significant because it fills a critical 

gap between the predictive techniques that are static and 

the dynamic and real-world Agile testing requirements. 

Although previous studies have either concentrated on 

noise handling through clustering or prioritization 

through reinforcement learning, this study is the first to 

integrate both to produce a synergistic effect. With the 

ongoing scaling of Agile development practices across 

industries, the necessity of smart and responsive TCP 

approaches is becoming more and more critical not only 

to enhance the quality of software but also to ensure the 

speed of delivery and customer satisfaction in the rapid 

development cycles. 

 This research is designed as follows: Section 2 

summarizes prior studies with examine current TCP 

limitations for Agile environments. Section 3 presents the 

proposal of the hybrid framework structure and 

realization. Section 4 outlines the arrangement of 

experiments, the sources of data, and the set of criteria. 

Section 5 will show the results and discuss them in detail. 

Finally, Section 6 concludes the paper with summaries of 

extended research avenues, i.e., the inclusion of Natural 

Language Processing (NLP) to derive test intent and to 

fine-tune reward functions. 

Related Work: Test Case Prioritization (TCP) aims to 

order test cases so that faults are detected as early as 

possible, reducing feedback time and resource 

consumption in regression testing, as discussed by Yoo et 

al. [1]. In Agile environments, frequent commits, rapid 

iteration, and continuous integration significantly 

increase the need for effective TCP, because test 

outcomes, coverage patterns, and code behaviors change 

quickly as described by Zhang et al. [2]. The demands of 

contemporary CI/CD pipelines increase these 

requirements further with the need of fast, automated, and 

flexible prioritization approaches that can keep up with 

the development speed as reported by Sami et al. [3]. 

Traditional methods of prioritizing using static methods 

do not work well in these conditions because they rely on 

a set of historical data and historical heuristics that Sharif 

et al.[4] define as deeporder . 

 Recent studies have paid attention to machine-

learning-TCP that makes use of historical data to enhance 

previous decisions during prioritization and respond to 

the varying development conditions as Ajorloo et al. 

described them in their study of machine-learning-TCP in 

the paper of 2024 [5]. To exploit synergies of several 

techniques, more recently hybrid methods are suggested, 

especially clustering to reduce noise and reinforcement 

learning to provide flexibility a more scalable and robust 

alternative in dynamic settings as described by Fokrul et 

al. [6]. This development is indicative of a larger 

movement to smart, data-driven TCP options that can be 

used in the Agile and CI/CD processes according to 

Cheng et al. [7]. 

Challenges of Traditional TCP in Agile Environments:  

The coverage-based heuristics, previous fault-detection-

based orderings, or predetermined rule-based 

prioritization methods of traditional TCP remain 

developed based on stable plan-driven development 

processes as described by Arshad et al. [8]. Traditional 

TCP methods coverage-based, previous faultdetection-

based ordering, or pre-established rule-based 

prioritization were originally designed to use in a stable 

plan-driven development process. These methods are 

efficient to identify faults when conditions remain 

consistent, although when sprint cycles are small and 

changes are continuous, they are ineffective as well as 

fault detectors are concerned as explained by Mamata et 

al. [9]. Since Agile processes are subject to continuous 

adaptation, fixed strategies with recourse to historical 

measurements usually become obsolete at every iteration 

of the process as explained by Tawosi et al. [10]. A 

significant issue is brought about by the fact that 

historical testing data and the present state of the system 

will not correlate the code is constantly evolving, and 

past test results and coverage patterns will become very 

unreliable in the present case, therefore, they are less 

likely to succeed in test driving the present code as 

described by Elbaum et al. [11]. A test case that is a 

priority in one sprint can be outdated by the next because 

of new features or refactoring as discussed by Rodr´ıguez 

S´anchez et al. [12]. This old-fashioned priority may 

make it take long to identify defects, perform 

unnecessary test, and diminish the testing efficiency as 

explained by Ajorloo et al. [5]. 

 Agile environments also introduce data-quality 

issues such as flaky tests, incomplete logs, and 

inconsistent execution behavior as explained by Siddique 

et al. [13]. Factors like flaky tests, partial logging, and 

rapid iteration cycles reduce the reliability of historical 

data that most of the traditional metrics are based as 

described by Birchler et al. [14]. The data quality 
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problems such as models that are based on predefined 

heuristics will not identify the most critical test scenarios 

properly, and leave untested faults, along with a lower 

level of testing process efficiency, as discussed by 

Rajasingh et al. [15]. CI/CD pipelines increase these 

challenges, as test suites may execute multiple times per 

day with limited time for computationally expensive 

prioritization methods as shown by Chen et al. [16]. 

Traditional techniques lack the scalability and 

responsiveness required for fast-moving agile 

environments as described by Zhang et al. [17]. 

 Empirical studies show the limitations of static 

TCP in dynamic Agile contexts. Performance 

inconsistencies arise from unstable test results and 

shifting defect patterns as explained by Omri and Sinz 

theorize [18]. Although clustering methods like 

DBSCAN can group similar tests effectively, they cannot 

adapt to changing project conditions without combining 

adaptive algorithms like reinforcement learning as 

discussed by Chen et al. [19]. These findings point to the 

importance of hybrid approaches that balance noise 

handling, scalability, and real-time adaptability. 

TCP using Machine Learning: The field of machine 

learning (ML) has made it into a highly discussed area in 

order to overcome the shortcomings of the conventional 

TCP methods. ML-based methods utilize the historical 

execution process data and the dynamic software metrics, 

to make more adaptive and informed decisions on 

prioritization decisions in advance as presented by 

Felding et al. [20]. The usefulness of ML in test case 

prioritization was also mentioned by Singhal [21]. Unlike 

static approaches, ML models can learn evolving patterns 

in test outcomes, fault severity, code churn, and defect 

density, enabling them to respond more effectively to 

continuous change in Agile environments as outlined by 

Mahdieh et al. 

[22]. 

 TCP has a number of ML paradigms applied to 

it. The supervised learning models are based on labelled 

execution histories to forecast high-risk or fault-prone 

test cases. Reinforcement learning (RL) views 

prioritization as a sequence decision-making, where one 

learns an optimal ordering policy based on the feedback 

of performed tests as discussed by Pan et al. [23]. 

Clustering methods cluster similar tests together and they 

share some similarity which allows noise to be reduced 

and it also helps to manage the large test suites in a more 

efficient way as argued by Li et al. [24]. Together these 

strategies uphold the data-driven and adaptive manner of 

the Agile development according to P.K. Gupta [25]. 

Supervised Learning Approaches: Application 

Supervised machine learning methods have been 

extensively considered in TCP as they can be trained to 

learn prioritization trends based on past test executions of 

the tests as introduced by Felding et al. [26]. Common 

features of these methods are past fault detection, 

execution time, test complexity and code coverage to 

rank test cases as a more effective ranking methodology 

as explained by Bugayenko et al. [27]. A prominent 

example is DeepOrder using deep neural networks to 

rank tests cases in a sequence according to past execution 

results and can increase APFDs by up to 40 per cent on 

industrial data sets as put across by Bajaj and Sangwan 

[28]. Nevertheless, approaches such as DeepOrder can be 

unsuccessful in quickly changing Agile settings because 

they require consistent, collected training data and are not 

so much flexible to changing test characteristics as 

explained by by Khatibsyarbini et al. [29]. 

 Other monitored models-such as Gradient 

Boosting and Random Forest-have also been used on 

TCP, using several test-level and code-level 

characteristics to predict the possibility of fault-detection 

potential with the use of multiple test-level and code-

level characteristics as discussed by Chen et al. [19]. 

These models were investigated by Tiutin as well [30]. 

Even though such models are effective under constant 

conditions, they usually need large, clean and well-

labeled datasets. This is a problematic requirement in 

Agile environments where test data can often be too 

noisy, too incomplete, or too old-fashioned as discussed 

by Gokilavani and Bharathi [31]. This difficulty was also 

mentioned by Rosenbauer [32]. Consequently, pure 

supervised methods might not be able to generalize in 

dynamic CI/CD settings. 

Reinforcement Learning (RL) for TCP: Reinforcement 

Learning (RL) has become an attractive alternative to 

supervised learning to TCP especially on Agile and 

CI/CD setting where changes in system behavior occur 

quickly at any given time of the day and night as 

suggested by Su et al. [33]. In contrast to supervised 

approaches, RL does not use labeled data; rather, it can 

learn prioritization policies through interaction with the 

environment and by getting reward signals, such as early 

fault detection, less execution time, or better resource 

utilization, as explained by Bagherzadeh et al. [34]. Such 

a feedback-guided learning allows RL agents to 

dynamically transform their decision-making strategies as 

the Agile development is very dynamic and constantly 

changing in nature as explained by Mirzaei and 

Keyvanpour [35]. 

 Recent experiments show that RL is effective in 

the dynamic adaption of prioritization. Indicatively, 

Bagherzadeh (2024) found that the rate of fault detection 

improved by up to 50% in the CI pipelines, which 

underscores the capability of RL to revise its policy 

depending on the real-time execution patterns as found by 

Yaraghi et al. [36]. Further enhancement such as time-

windowed reward functions enhance further RL 

responsiveness to recent changes and fault trend variation 

as suggested by Li et al. [37]. 
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 Despite these advantages, RL has problems with 

large-scale test suites. Real-time applicability can be 

hampered by exploration costs, low convergence rates, 

and the necessity of many iterations to explore the 

phenomena and facilitate their future implementation and 

application in real-time scenarios as explained by Han et 

al. [38]. Incorporating RL into CI/CD pipelines can also 

be engineered with lots of attention without adding delays 

or computational overhead that could cause a disruption 

of quick build cycles as explained by Pandhare et al. [39]. 

These drawbacks have led to the desire hybrid methods 

that combine RL with techniques like clustering to 

improve scalability. 

Test Case Prioritization Clustering Techniques: TCP 

extensively uses clustering methods especially the 

unsupervised learning methods to maintain large and 

diversified test repositories. Such algorithms as the 

DBSCAN and K-Means cluster test cases based on their 

features (e.g., execution time, failure rate, and similarity 

of the code) and limit the decision space, allowing more 

efficient prioritization processes to be carried out, a 

feature of algorithms that are not new but has only 

recently been embraced in research as outlined by Vescan 

et al. [40]. 

 DBSCAN, specifically, works well with test data 

since it can find clusters and outliers without specifying 

the number of clusters involved and irregular data 

distribution can also be dealt with. 

 Hybrid types of clustering have been examined 

with the aim of optimizing the performance of TCP. 

Indicatively, Zhang and Chen (2023) integrated 

DBSCAN with Firefly Optimization to rank tests within 

clusters, and showed better APFD results with the help of 

reinforcers as explained by Bagherzadeh et al. [34]. 

Nevertheless, these approaches are mostly stagnant and 

cannot keep up with the constant changes prevalent in 

Agile setting as explained by Wang and Zhang [41]. To 

address this issue, Cluster-based Adaptive Prioritization 

(CAP) strategies dynamically update cluster boundaries 

and test priorities according to the latest test results and 

code changes as explained by Vishwanath Karad et al. 

[42]. Nevertheless, the majority of clustering-based TCP 

models do not include the learning mechanisms such as 

RL and can therefore not fine-tune their decisions using 

feedback as it appears as described by Pan et al. [23]. 

 Although clustering is useful in sorting large test 

suites and in reducing redundancy, the fact that it is a 

static concept restricts its adaptability to rapid Agile 

workflows as noted by Gupta and Mahapatra [43]. Real-

time decision-making can not be done in pure clustering 

methods which cannot dynamically respond to changing 

fault patterns in real-time. All these limitations have 

given rise to an increased desire to use hybrid methods 

and introduce clustering with adaptive learning methods 

to provide stability and responsiveness in the 

prioritization process together with stability and 

responsiveness in the prioritization process as outlined by 

Ahmad et al. [44]. 

Hybrid Approaches: Combining Strengths: Clusters 

increased with reinforcement learning (RL) have been 

popular in TCP study, especially in Agile frameworks 

where scalability and flexibility must be ensured by 

Singh et al. [45]. Clustering can be used to manage the 

large test suites by grouping like test cases and RL can be 

used to make adaptive decisions using real-time feedback 

and long-term performance objectives as per Vescan et al. 

[40]. 

 A popular design is a hierarchical two stage 

process where clustering is followed by prioritization 

space reduction and a RL agent is used to decide the 

sequence to be followed in each cluster. As an example, 

Berisha (2024) and Prado Lima et al. [46] applied 

clustering to create homogeneous groups of test cases and 

further prioritized them using RL, which was applied 

intra-cluster. This architecture decreases the 

computational load and enables the prioritization policy 

to adapt using the measured fault detection and execution 

time measurements in sight of the data acquired during 

execution and monitoring of faults as described by 

Vescan et al. [47]. Such hybrid models have been 

reported to lead to better fault detection and CI/CD 

performance, based on empirical research, and have 

demonstrated higher efficiency in these fields of study as 

described by Chen et al. [48]. 

 Based on this paradigm, the hybrid model 

adopted in the present paper applies DBSCAN to find 

natural clusters of test cases based on such features of 

code churn, historical defects, and runtime data as code 

churn, historical defects, and runtime data. In comparison 

to K-Means, DBSCAN does not demand specification of 

the number of clusters and is more efficient at noise and 

outliers-common to Agile test data as explained by Tiutin 

and Vescan [30]. Once clustering is completed, a Q-

learning agent ranks test cases in a cluster by a rewarding 

function that is consistent with the Agile objectives: the 

prompt detection of faults, less time to execute, and 

adjustment to changing defect behavior. This 

combination offers the benefit of scaling with clustering, 

noise tolerance via DBSCAN, and adaptability with 

continuous learning through RL. The approach is 

appropriate to be applied to Agile workflows where 

quick, adaptable, and contextual TCP is required due to 

the localized decision-making process and the availability 

of real-time feedback as outlined Li et al. [49]. 

Tools, Datasets, and Benchmarks: Benchmarking TCP 

techniques has been performed on a number of datasets 

and tools, with the most common ones being Defects4J, 

LRTS, and Apache test suites described by Zhang et al. 

[50]. The drawbacks of Defects4J are especially common 

because it has repeatable faults and detailed execution 
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logs as explained by Han et al. [38]. Nevertheless, its 

comparatively rigid structure does not make it applicable 

to Agile environments, where codebases and test behavior 

change at a high pace. More general discussions of TCP-

based methodologies point to the fact that most currently 

available data do not cover Agile dynamics sufficiently 

well described by Khatibsyarbini et al. [29]. 

 Some researcher model development pipelines 

based on synthetic data or mine execution traces of CI 

systems like Jenkins to better model real-world behavior 

in development pipelines, which are executed in practice 

as proposed by Vescan et al. [51]. These sources have 

more realistic presentations of the variating test results, 

code fluctuations, and noisy logs that reflect closely well 

the actual Agile workflows. 

 A similar weakness relates to evaluation 

measures. The majority of TCP research is based on 

APFD or NAPFD, which does not adequately capture 

Agile principles, including time and scalability and real-

time responsiveness as projected by Rosenbauer et al. 

[32]. Recent research suggests the development of more 

rigorous evaluation criteria, including capture of 

reduction in execution time, responsiveness, robustness in 

the presence of dynamic conditions as stated by Li et al. 

[49]. This wider range of metrics is proposed in the given 

model that tries to offer a more realistic and Agile-

friendly measure of TCP performance as reported by 

Yaraghi et al. [52]. 

Research Gaps and Motivation: Although there has 

been progress in the domain of ML and RL-driven TCP, 

there are a number of gaps to be filled when 

implementing these techniques in Agile settings. 

Scalability still remains a significant issue with RL 

models usually needing a lot of training and potentially 

not converging fast enough to allow quick development 

cycles to occur on a model with a high level of scalability 

at the same time as describes by Yaraghi et al. [52]. 

Another urgent concern is data quality: numerous models 

expect clean, labeled data, but in Agile pipelines, test 

results are often noisy, incomplete, or inconsistent in 

most cases as described by Cheng et al. [53]. 

 Many of the current approaches are also 

restricted in terms of adaptability. The traditional or 

semistatic models in most cases do not modify the 

prioritization techniques based on the changing defect 

patterns, changing codebases or changing patterns of 

execution in most circumstances, such as test executions, 

code-written patterns, and so forth as described by Iqbal 

and Al-Azzoni [54]. Moreover, real-world integration 

with CI/CD pipelines is often not considered; only 

several models can be used with lightweight and low-

overhead deployment that is critical in automated 

processes when feedback and low latency are the key 

factors to consider as described by Geetha et al. [55]. 

This requirement was also highlighted by Tasneem [56]. 

Such gaps drive the necessity to have hybrid, adaptive, 

and noise-tolerant TCP solutions that can be successfully 

used in current Agile and CI/CD environments. 

Proposed Methodology: The proposed hybrid model is a 

variant of DBSCAN clustering that is integrated with the 

Q-learning reinforcement learning addressing the issues 

of Agile regression testing, such as noisy data, flaky tests, 

and fast-changing codebases. The pipeline is based on six 

stages: Data Collection, Preprocessing, Feature Selection, 

Machine Learning (DBSCAN + Q-Learning), Model 

Evaluation and Deployment (Figure 6). This workflow 

guarantees the scalability and flexibility as well as the 

openness to CI/CD platforms, including Jenkins, Azure 

Devops, Docker, and Selenium. 

 After data collection and preprocessing, such as 

removing duplicates, normalizing and treating flaky tests, 

are completed, then the relevant features to include in the 

model training are chosen. DBSCAN clusters group test 

cases based on structural and behavioral similarities, 

considering factors like past failures, code changes, and 

execution patterns. Its density-based methodology 

removes noise and finds clusters without specifying the 

number of groups, and thus is appropriate to 

heterogeneous Agile data. 

 In each cluster, Q-learning was used to establish 

the best execution sequence by maximizing fault 

detection (quantified through APFD) and minimizing the 

cost of execution. DBSCAN with Q-learning allows its 

application in reducing noise, adaptive prioritization, and 

effective early fault detection on time. 

 Finally, the system is implemented within 

CI/CD pipelines, where it constantly updates clusters and 

recalculates prioritization policies using real-time 

feedback. This guaranties continued flexibility in 

modification of Agile development and enhances 

accuracy, APFD, and total efficiency in regression 

testing. 

Overview of the Hybrid Model: The entire operational 

workflow of the proposed method is shown in figure 2. It 

begins by gathering heterogeneous Agile test data, and 

then preprocessing (normalization, deduplication, flaky-

test detection). The features that are selected are sent to 

DBSCAN to remove noise and cluster, and the Q-

learning algorithm is used to rank the tests within a 

cluster. The model is updated by a feedback loop that 

reacts on evaluation metrics (APFD, NAPFD, accuracy, 

and execution time), making it possible to constantly 

adapt it. 

Dataset Collection: Open-source software repositories 

and industrial Agile CI/CD environments, such as 

Defects4J, Apache Commons, DeepOrder GitHub CI 

logs, and simulated Agile pipelines were used to gather 

data. The combined data set has about 15,000 test runs 
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with commit data, historical failure data, run time, code churn data, levels of defect severity, and test logs. 

Table 1: Comparative Analysis of Recent Studies on Predictive Analytics for TCP in Agile Software Development. 

 

Author Dataset 
Predictive Analytics ML/AI Method Focus on 

TCP Agile/CI Adaptability Scalability 

Yoo et al. [1] Literature survey  Yes No Yes No No 

Zhang et al. [2] Open-source logs (DBSCAN)  No Yes Yes No No 

Sami et al. [3] OSS test suites  No Yes Yes Yes No 

Ajorloo et al. [5] Agile project data  Yes Yes No Yes No 

Cheng et al. [7] Long-running industrial test suites  Yes Yes Yes Yes No 

Arshad et al.[8] Industrial defect data  Yes Yes No Yes No 

Tawosi et al. [10] Survey data  Yes No No Yes No 

Rajasingh et al. [15] OSS fault detection datasets  No Yes Yes No No 

Chen et al. [16] Historical execution info  No Yes Yes No No 

Felding et al. [20] Synthetic datasets  No Yes Yes Yes Yes 

Pan et al. [23] CI log data  No Yes Yes No No 

Bugayenko et al. [27] OSS task datasets  Yes Yes No Yes No 

Bajaj et al. [28] Synthetic test cases  No Yes Yes No No 

Felding et al. [26] OSS test data  No Yes Yes Yes No 

Khatibsyarbini et al. Literature re-[29] view Yes Yes Yes No No 

Bagherzadeh et al. [34] Historical logs No Yes Yes Yes No 

Gupta et al. [43] Unit + integration tests No Yes Yes No No 

Bagherzadeh et al. [52] Open-source test suites No Yes Yes No No 

Vescan et al. [40] Multiobjective test suites No Yes Yes Yes No 

Prado Lima et al. [46] Configurable  CI data Yes Yes Yes Yes No 

Z. Zhang et al. [53] Open-source test logs No Yes Yes No No 

Han et al. [38] Reinforcement learning test data Yes Yes Yes Yes No 

Vescan et al. [51] Regression test suites No Yes Yes No No 

Li et al. [49] Semanticaware CI data No Yes Yes Yes Yes 

Cheng et al. [53] Large OSS config test sets No Yes Yes No Yes 

Qingran et al. [33] CI execution logs from open-source systems No Yes Yes Yes Yes 

Yaraghi et al. [36] TARBENCH: 45K tests, 59 projects No Yes No No No 

Tasneem et al. [56] 76 studies from 5 databases Yes Yes No Yes No 

Pandhare et al. [39] Synthetic CI tests (Mabl, Launchable) Yes Yes No Yes No 

 

 
Figure 2: Methodology of Proposed Hybrid Model for Test Case Prioritization. 
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 This mixed data set is also indicative of the 

diversity and heterogeneity of actual Agile processes and 

ensures that the hybrid model is trained and tested under 

real and heterogeneous testing conditions. Table 2 

presents a detailed account of all the data sources and the 

attributes that were recorded. 

Table 2: Summary of Datasets and Tools Used 

 

Source Repository/Tool Test Cases Data Collected 

DeepOrder GitHub Java CI Projects 5,000 Historical CI logs, commit history, 

and test failures 

Defects4J

 Benchmark 

Defects4J v2.0 Approx. 3,500 Test cases, real-world bugs, and 

patch history 

Apache Commons Apache Commons Lang, 

Math 

Approx. 3,000 Bug report, Code revisions and test 

coverage 

Proposed Hybrid 

Model 

Simulated Agile CI 

Projects 

Approx. 2,000 Regression testing, bug-fix data, 

and code changes 

 

Preprocessing: Agile CI/CD pipelines are known to 

produce a lot of noisy, inconsistent and incomplete test 

data because of quick code change, unstable test 

environment, and parallel execution. Hence, a strict 

preprocess step was implemented in order to deliver high 

quality input to both the DBSCAN clustering as well as 

the Q-learning reinforcement model. 

 To eliminate redundant data, first, duplicate 

records (2.4%) were eliminated to avoid an influence of 

duplicate information on cluster density estimation. The 

missing values (5.7%), which are typically present in 

execution time logs and test results, were imputed using 

mean imputation in the case of numerical attributes and 

mode imputation in the case of categorical attributes. 

Also, 3.1 percent of flaky tests-detected by inconsistent 

pass/fail behavior under the same execution conditions 

were eliminated to improve data stability and avoid 

misleading reward signals during training 

 In order to equalize the heterogeneous numeric 

features, Min-Max Normalization was used to normalize 

all the numerical variables within a range [0,1]. This 

action stabilizes the distance based clustering of 

DBSCAN and speeds up the convergence of Q-learning 

because huge features are not allowed to dominate. The 

normalization can be defined as: 

XScaled  

Where X represents the original value of the feature, Xmin 

and Xmax is the minimum and maximum value of the 

feature observed. 

Categorical variables (such as defect severity, type of the 

test, etc) were coded with the one-hot encoding to avoid 

ordinal bias and be compatible with both the clustering 

and the reinforcement learning state representations. The 

complete preprocessing was performed with the help of 

Pandas, NumPy, and Scikit-learn, so that it can be easily 

integrated with the reinforcement learning component of 

TensorFlow. 

Feature Selection: In order to match the dynamic needs 

of Agile, we have determined the most influential 

features in three areas code changes (e.g., churn, commit 

frequency), defect history (e.g., severity, recurrence), and 

execution data (e.g., test runtime, recent failures). 

Pearson’s Correlation Coefficient was used to assess 

linear relationships, while Recursive Feature Elimination 

(RFE) iteratively removes low-effect features. Both 

techniques were implemented using Scikit-learn. The top 

10 features were retained to maintain balance across 

domains and increase the predictive accuracy of the 

model. 

Model Selection: The Machine Learning module 

integrates DBSCAN clustering with Q-Learning 

reinforcement learning to form an adaptive two-phase 

prioritization strategy. DBSCAN first organizes test cases 

into coherent structural groups, after which Q-Learning 

optimizes the execution order within each cluster. 

Algorithm 1 summarizes the complete hybrid workflow, 

showing how clustering and reinforcement learning 

interact to produce the final prioritized test suite. 

DBSCAN Clustering: The first component of the 

machine learning module applies DBSCAN to identify 

groups of structurally and behaviorally similar test cases 

based on density characteristics. This step corresponds to 

the unsupervised ML component illustrated in Figure 2. 

DBSCAN is well suited for Agile regression testing 

because it does not require a predefined number of 

clusters and is inherently robust to noise an important 

advantage when dealing with heterogeneous, rapidly 

changing test data as described by Ester et al. [57]. 

Unlike K-Means, DBSCAN does not depend on spherical 

cluster assumptions or a predefined number of clusters, 

making it more suitable for irregular and evolving Agile 

test datasets. There were two important hyper parameters 

that were tuned through grid search: 

 ε ∈ [0.3,0.7], MinPts ∈ [3,7] 
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Here, ε is the radius of the neighborhood that is used to 

define the density connectivity and MinPts is the 

minimum number of points that are needed to create a 

dense region. The evaluation of the quality of clustering 

was done with a Silhouette Score based measure that 

evaluated the intracluster cohesion and the separation 

between clusters. There were higher silhouette values, 

which validated that the selected hyperparameters 

produced and well structured clusters that can be used to 

develop downstream reinforcement learning. DBSCAN 

was provided on Scikit-learn, and Q-learning was 

provided on TensorFlow. 

Q-Learning Based Test Case Prioritization: After the 

formation of clusters, Q-Learning is used in a cluster to 

obtain an ideal order of execution of the test cases 

contained in the cluster. This design is based on the 

reinforcement-learning TCP approach that Spieker et al. 

studied in continuous integration environment [58]. Q-

Learning is a cluster-level algorithm that minimizes the 

computational costs and still provides fault-detection 

capability. 

The reward function used by the RL agent to evaluate 

each action (i.e. which test case to execute next) is as 

follows the early fault detection and cost of execution are 

balanced: 

R = w1 · APFD − w2 · Time 

Where w1 = 0.7 is used to maximise the Average 

Percentage of Faults Detected (APFD) and w2 = 0.3 is 

used to discourage longer test execution times. This 

incentive system encourages the process of focusing on 

high-impact and low-cost tests, which are closely 

associated with the Agile hardship demands. 

The Q-values are solved through recurrence of the 

Bellman optimality equation suggested by Watkins and 

Dayan [59]: 

 
where α = 0.1 is the learning rate and γ = 0.9 is the 

discount factor. The learning rate determines the speed at 

which new experience impacts the policy of the agent, 

whereas the discount factor ensures that the agent is not 

greedy but optimizes over long-term goals. 

This setup was directly equivalent to the Reinforcement 

Learning (RL) block implemented in Figure 2, in which 

the combination of DBSCAN-generated clusters, the 

APFD time reward model, and the α = 0.1,γ = 0.9 

learning rate allows the generation of adaptive, data-

driven prioritization of test cases that would be suitable in 

dynamic Agile CI/CD contexts. 

Algorithmic Workflow: The full hybrid Test Case 

Prioritization (TCP) algorithm presented in algorithm 1 

combines the results of DBSCAN clustering along with 

the adaptive Q-Learning decision-making. Each cluster is 

processed independently, allowing the model to scale 

effectively to large Agile test suites while maintaining 

local adaptability and noise robustness. 

Algorithm 1: Hybrid Clustering and Q-Learning Based 

Test Case Prioritization 

Input: Clusters C1,C2,...,Cn 

Output: Final prioritized test suite 

Initialize: α = 0.1, γ = 0.9, w1 = 0.7, w2 = 0.3, episodes = 

100, ϵ = 0.1; 

Define:; 

State s: current test case and its features; 

Action a: select next test case; 

Terminal state: all test cases executed or testing budget 

exhausted; 

 

 
 

Baseline Methods: To analyze the effectiveness of the 

suggested hybrid model (DBSCAN + Q-learning) 

comparing with four widely adopted baselines that 

represent heuristic, metaheuristic, and machine learning 

families. 

foreach cluster C i do 
Initialize Q ( s,a ) ← ; 0 
for episode ← 1 to N do 

Initializestate s ; 
while notterminal do 

Chooseaction a using ϵ - greedypolicy; 
Executetestcase,measure APFD and Time ; 
Computereward: R = w 1 × APFD − w 2 × Time ; 
Update Q ( s,a usingtheBellmanequation; ) 
Set s ← s ′ ; 

Ranktestcasesby Q - values; 

Mergeprioritizedlistsfromallclusters; 
return finalprioritizedtestsuite; 
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Random Prioritization: A lower-bound baseline that 

executes test cases in random order. It is included in 

almost all TCP studies as a minimal reference for early 

fault detection performance [80], [81]. Its weakness lies 

in a complete lack of learning or adaptation, resulting in 

poor fault detection. 

Greedy Additional (Additional Coverage): A classical 

heuristic that iteratively selects the test case providing the 

maximum additional coverage or fault detection with 

respect to already executed tests [81]. It is efficient and 

historically forms the benchmark in regression testing. 

However, it is fixed and fails to keep up with changing 

Agile pipelines. 

Deep Learning-Based TCP (DeepOrder): A strategy 

based on learning using historical CI logs to learn neural 

models to predict the best test sequences. It embodies the 

current state of the art in ML-based TCP, however, it 

demands very big training datasets and great computation 

capabilities which limits the scalability when the resource 

is scarce. 

Proposed Hybrid Model (DBSCAN + Q-learning): In 

the first stage of our method, we cluster test cases 

together with the help of DBSCAN and use the Q-

learning method in each cluster to select the tests 

adaptively. The reward function balances the early fault 

detection (APFD) and the execution time. In comparison 

with baselines, this hybrid model is scalable, noise 

resistant and adaptable to Agile CI/CD pipelines. 

 

Table 3: Baseline Comparison Matrix 

 

Method Type Strengths Limitations 

Random Heuristic 

(baseline) 

Simple; provides a lower bound Very poor detection rate; no 

adaptation 

Greedy Additional Heuristic Widely used; efficient for small 

test suites 

Static; not adaptive to Agile 

dynamics 

GA-TCP Metaheuristic Finds optimized prioritization 

sequences 

Computationally expensive; slow 

for CI/CD 

DeepOrder (2021) Deep Learning Learns from CI logs; strong 

empirical performance 

Requires large datasets; resource 

heavy 

Proposed Hybrid 

(DBSCAN + Q-

learning) 

Hybrid ML + RL Adaptive, scalable, robust to 

noisy Agile data 

More complex implementation; 

requires retraining 

 

Model Testing: To rigorously evaluate the performance 

of the proposed hybrid model, the dataset was divided 

into a training set (80%) and a testing set (20%). A 5-fold 

cross-validation strategy was employed to reduce the risk 

of overfitting and to ensure that the learned prioritization 

policy generalizes effectively across varying Agile 

project conditions. Each experiment was run 30 times 

with various random seeds, which admits stochastic 

variations to average due to clustering density threshold 

and exploration of reinforcement learning. The standard 

deviation and the mean are used to report the results 

obtained after running. 

The paired t-tests at 95 percentage confidence level of p 

< 0.05 were performed to determine whether the 

proposed approach improved statistically significant 

improvements over the baseline techniques. This 

statistical testing will make sure that the apparent 

improvements are not because of randomness but rather 

that there are improvements in performance. 

 The model was tested on the basis of four 

popular indicators in Test Case Prioritization (TCP) 

studies, Accuracy, APFD, NAPFD, and Testing Time 

Reduction. These measures are correctness, the ability to 

detect faults, the ability to operate under restriction, and 

computational savings, respectively. 

Accuracy: Accuracy is a measure of the percentage of 

ordered test cases that are correct as compared to an ideal 

prioritization. It measure the consistency of the learned 

policy to meaningful sequences of execution: 

Number of Correctly Prioritized Test Cases 

Accuracy = -----------------------------------------------------× 

100. 

Total Test Cases 

 The accuracy is due to the fact that TCP not only 

attempts to identify faults at an early stage but also to 

generate logically consistent, stable rankings over the 

iterations. 

Average Percentage of Faults Detected (APFD): APFD 

is used to measure the rate at which faults are discovered 

when running the tests. It is a conventional benchmark 

measure proposed by Rothermel et al. [60] and still one 

of the most powerful TCP measures. APFD values are 

higher, which means faster fault detection: 

, 
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Where TFi is the index of the initial test case which 

identifies fault i, n is the overall count of test cases, and m 

is the overall count of faults. This indicator is necessary 

since early detection leads to direct saving of debugging 

time and avoidance of the spread of faults during Agile 

CI/CD cycles. 

Normalized APFD (NAPFD): NAPFD builds upon 

APFD to support the situation of partial execution of 

budgets or detecting partial fault. This is especially 

appropriate to Agile pipelines whereby full test can be 

curtailed because of time boxed sprints often restrict full 

test suite execution. It is computed as: 

. 

The normalization also guarantees the comparability of 

the results across datasets, fault densities and time 

constraints, which is a drawback of raw APFD in 

restricted environment. 

Testing Time Reduction: To evaluate computational 

efficiency is measured by how much the total execution 

time is reduced when comparing it to the techniques used 

as a baseline: 

Tbaseline − Tproposed 

Time Reduction =------------------------------× 100, 

Tbaseline 

Where Tbaseline represents the runtime of a conventional 

approach ( random or greedy ordering) and Tproposed is the 

runtime using the hybrid model. This metric is critical for 

Agile workflows, where regression testing constitutes a 

major portion of sprint time, and reductions directly 

translate to faster delivery cycles. 

Statistical Significance Testing: In order to test the 

reliability of performance improvements, paired t-test 

was used: 

, 

where d is the mean difference across paired 

observations, Sd is the standard deviation of differences, 

and n is the number of experimental repetitions. Using 

paired tests ensures fair comparisons because each 

technique is evaluated on identical data partitions and 

random seeds. 

Research Setup: These experiments were conducted on 

Windows 10, Intel Core i7, 16 GB RAM and NVIDIA 

GTX 1080. The system is built on Python 3.9, 

TensorFlow 2.10, relating to reinforcement learning, 

Scikitlearn 1.2, concerning clustering methods, and 

Selenium 4.8 to run automated tests by using remote web 

driver. Version control was done using GitHub and results 

were visualized using Matplotlib. The dataset contained 

10,000 Agile test cases (through Jira and Azure DevOps) 

and 5,000 test cases of the Defects4J benchmark. The 

variety of the sources enabled practical, representative 

assessment of the hybrid model in Agile conditions. 

RESULT 

 To assess the efficiency of the proposed hybrid 

model, three benchmark techniques, Random Selection, 

Greedy (Additional Coverage), and DeepOrder (a Deep 

Learning-Based TCP), were compared. The performance 

was assessed using four key metrics: Accuracy, APFD 

(Average Percentage of Faults Detected), NAPFD 

(Normalized APFD), and Testing Time Reduction. Table 

6.1 provide the numerical results summary. 

Table 4: Performance Comparison of TCP Techniques 

 

Technique Accuracy (%) APFD NAPFD Testing Time Reduction 

Random Selection 52.0 0.48 0.62 5% 

Greedy Algorithm 68.0 0.65 0.71 12% 

DeepOrder 81.0 0.78 0.84 18% 

Proposed Hybrid Model 90.5 0.87 0.905 28% 

 

 The hybrid model had the highest APFD (0.87), 

which means that this model can identify early fault 

detection. Its NAPFD of 0.905 demonstrates good short-

term progress in priorities. It has a high degree of 

prediction accuracy of 90.5%, which indicates many 

indications of reliability in the calculation of optimal test 

performance orders. Most significantly, it was able to 

reduce the time of test execution by 28, which was better 

than DeepOrder (18 percent), Greedy (12 percent), and 

Random (5 percent). These findings were graphically 

represented in Figures 3, 4, and 5, which give a 

comparative bar chart of all the four metrics and 

techniques. 

Accuracy and Testing Time Reduction: The 

comparative results of Accuracy and Testing Time 

Reduction are shown in Figure 3 The hybrid model 

proposed has an accuracy of 90.5%, which is a 73.9% 

relative improvement over Random Selection, a 32.9% 

improvement over Greedy, and an 11.7% improvement 

over DeepOrder. 
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Figure 3: Working principle of the hybrid model for test case prioritization. 

 

 In terms of Time Reduction in the Testing, the 

hybrid model scores 28, which is much higher than 

DeepOrder (18) by 55.5, Greedy (12) by 133 and 

Random (5) by an astonishing 460. This is a clear pointer 

that the hybrid approach not only enhances the reliability 

of prediction but also makes the execution of the hybrid 

approach highly effective in Agile environments. 

APFD and NAPFD: Figure 4 show the relative 

performance of the four techniques based on APFD and 

NAPFD measure. The hybrid model achieved an APFD 

of 0.87, which is 81% higher than Random Selection 

(0.48), 34% better than Greedy (0.65), and 11.5% 

superior to DeepOrder (0.78). 

 
Figure 4: Comparative performance of TCP techniques in APFD and NAPFD 

 

 Similarly, in the case of NAPFD, the hybrid 

model records 0.905, outperforming Random Selection 

(0.62) by 46%, Greedy (0.71) by 27.4%, and DeepOrder 

(0.84) by 7.7%. These results prove that the hybrid 

method ensures earlier and more reliable in fault 

detection, which is a significant aspect of reducing 

debugging costs in Continuous Integration/Continuous 

Deployment (CI/CD) pipelines. 

Overall Comparison of TCP Techniques: The overall 

visual comparison indicates clearly that the proposed 

hybrid model is always better than all baselines in terms 

of accuracy, fault detection effectiveness, and reduction 
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of testing time. One-way ANOVA of all four techniques 

and metrics produced p < 0.001, which proved that there 

are significant differences in general. Additional post-hoc 

Tukey tests demonstrated that the hybrid model is much 

better (p < 0.01) in all pairwise comparisons. 

 

 
Figure 5: Overall Comparison of TCP Techniques 

 

 Overall, the proposed hybrid model shows 

statistically significant improvements in all evaluation 

metrics compared to current methods. In terms of 

accuracy achieves an improvement of 11.7% over 

DeepOrder, 32.9% over Greedy, and 73.9% over Random 

selection. The model save testing time, with 55.5% 

improvement over DeepOrder, 133% over Greedy, and an 

incredible 460% compared to Random. In fault detection 

efficiency, the model also has an APFD increase of 11.5% 

relative to DeepOrder, 34% relative to Greedy and 81% 

relative to Random. Its NAPFD score also shows a great 

improvement as it is better than DeepOrder by 7.7, 

Greedy by 27.4, and Random by 46. All these results 

support the power, efficiency, and adaptability of the 

proposed hybrid model in Agile software testing. The 

model is a combination of clustering and reinforcement 

learning, which is why it is an effective solution to the 

issue of noisy data, frequent code changes, and CI/CD 

pipeline constraints, and, therefore, a viable and scalable 

solution to the problem of test case prioritization in the 

real world. 

DISCUSSION 

 The hybrid model demonstrates that combining 

density-based clustering with reinforcement learning 

provides a robust solution for agile test case 

prioritization. DBSCAN contributed by filtering noise, 

identifying structurally coherent groups of test cases, and 

capturing behavioral similarities that traditional distance-

based or supervised techniques fail to model. Q-Learning 

then built on these clusters to adaptively select test cases 

that maximize fault detection while accounting for 

execution cost, resulting in a more efficient use of limited 

testing budgets in fast-paced CI/CD environments. 

 These results comprise a wise observation that 

noise-conscious grouping and subsequent adaptive 

decision making generate a more robust prioritization 

approach compared to both methods individually. This 

enables the model to be stable even when it is faced with 

flaky tests, incomplete logs and frequent code changes 

issues that greatly impair the performance of deep 

learning-based system like DeepOrder which heavily 

depends on clean and large-scale historical data. 

 Although it has its advantages, the strategy has 

some drawbacks. DBSCAN is sensitive to the selection 

of both ε and MinPt, and the improper choice of these 

parameters can result in fragmented or oversized clusters. 

Also, Q-Learning can be slow to converge in cases the 

test environment is constantly changing, which is typical 

of Agile teams that apply rapid iteration. Adequately, 

various datasets are also relied on in the model; hence, its 

capabilities could be limited during the initial phases of 

projects where historical testing data are limited. 

 The research deals with significant threats to 

validity through rigorous preprocessing, trialing, and 

testing of statistical significance. Nevertheless, how much 

a person can generalize his results outside the datasets 

that were used specifically to non Java projects or 

possibly industrial systems with varying architectural 

properties is yet to be tested further. 
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 Altogether, the hybrid model adds a feasible and 

theory-founded model applicable to the reality CI/CD 

pipelines. Its adaptability (and noise tolerance) strengths 

make it suitable in areas where reliability and quick 

feedback is paramount. 

Threats to Validity: There are a number of possible 

threats to validity of this study. Internal validity might 

have been affected by the choice of DBSCAN parameters 

(ε ∈ [0.3,0.7], MinPts ∈ [3,7]) and Q-learning hyper 

parameters (α = 0.1, γ = 0.9). Although grid search 

(Section 24) was used to tune parameters, alternative 

settings may create effects. To reduce this, we repeated it 

30 times, and we used statistical testing (t = 3.45, p < 

0.01) to verify that this is significant. 

 The datasets that are applied to external validity 

are Defects4J, Apache Commons, and simulated Agile 

CI/CD projects (Section 26). Although these are common 

benchmarks, they might not be applicable to other areas 

like embedded systems, mobile platforms or large-scale 

industrial pipelines. We plan to continue validation using 

larger datasets in future work. 

 Construct validity comes as a result of metrics 

used in the evaluation. The quality of fault detection and 

prioritization is well-quantified by APFD, NAPFD and 

accuracy yet is not comprehensive in terms of the CI/CD-

specific dimensions (developer effort, pipeline latency, or 

resource consumption). Other measures will be used in 

further research to enhance construct coverage. 

 The validity of the conclusion can be influenced 

by the distribution of data and the possible sampling bias. 

Agile data is able to change rapidly hence model 

retraining was also added as a prevention measure. 

Regular retraining also keeps the performance consistent 

within the dynamic nature of project environment. 

Deployment: To enable practical adoption in real Agile 

software engineering workflows, the proposed hybrid 

model is deployed as a lightweight Python-based 

microservice integrated directly into CI/CD pipelines. 

The deployment architecture is designed to ensure 

automated prioritization of test cases , smooth scalability, 

consistency in the environment and low operational 

overhead. 

 The overall deployment pipeline is shown in 

figure 6. The trained model, which is put in a Docker 

container, is connected to CI/CD systems, including 

Jenkins and Azure DevOps. Depending on each code 

commit or pull request, the CI server invokes the 

microservice which polls the existing repository states, 

source-code modifications, and last run executions. The 

preprocessing and clustering phases are carried out 

automatically and Q-learning produces a new prioritized 

test suite, which is submitted to automation frameworks 

like Selenium to execute. 

 The system facilitates periodic retraining of the 

reinforcement learning agent whether on a periodic basis 

(usually monthly) or in case major changes in fault 

patterns, code churn, or test suite behavior are observed. 

This will make sure that prioritization policies are in line 

with the changing Agile development trends. The real-

time feedback and performance auditing is achieved due 

to constant tracking of key performance indicators, such 

as APFD and cumulative execution time. 

 Docker containerization allows the similarity in 

deployment across staging, production and development 

platforms as well as facilitating portability, microservice 

chaining and horizontal scaling, in order to mitigate the 

testing workload. The design is in agreement with the 

modern DevOps and Agile delivery. 

 

 
Figure 6: Proposed Hybrid Model Deployment Architecture in CI/CD Environments. 
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 A typical Python endpoint that is used to call the DBSCAN-based clustering and Q-learning prioritization 

microservice is provided in Listing 1. 

Listing 1: Python Endpoint for Q-learning Based Test Prioritization 

@app.route(’/prioritize’, methods=[’POST’]) def prioritize_tests(): 

data = request.get_json() test_features = preprocess(data) clusters = 

dbscan.fit_predict(test_features) prioritized_tests = {} for cluster_id in 

set(clusters): 

cluster_data = test_features[clusters == cluster_id] priorities = 

q_learning_rank(cluster_data) prioritized_tests[cluster_id] = priorities 

return jsonify(prioritized_tests) 

The deployment container is defined using the Docker configuration shown in Listing 2, enabling consistent execution 

across heterogeneous environments: 

Listing 2: Dockerfile for Deployment Container 

FROM python:3.10 

WORKDIR /app COPY . /app 

RUN pip install -r requirements.txt 

CMD ["python", "app.py"] 

 

 The given deployment workflow shows that the 

suggested hybrid model is not merely a theoretical 

construct but can be deployed into the real-world 

industrial pipelines to provide an automated, scalable, 

and adaptive way of regression testing within the Agile 

CI/CD framework. 

Conclusion with Future Direction: This paper presented 

a hybrid model combining test case prioritization, 

DBSCAN clustering, and Qlearning-based reinforcement 

learning to address the challenges facing the Agile 

software development process. The suggested model 

showed the following important gains, including 90.5% 

accuracy, APFD of 0.87, and the minimization of the test 

time by 28%. The superiority of the model over 

traditional and deep learning based models is due to the 

structural arrangement of clustering applications and 

adaptive learning features of reinforcement learning, the 

model, which is vital in dynamic, CI/CD-based Agile 

environments. Future work will improve the model 

intelligence by integrating Natural Language Processing 

(NLP) for deriving semantic insights from user stories 

and linking them to relevant test cases. Also, the use of 

online learning methods can be used to reduce model 

drift as time goes by, and this guarantees constant 

flexibility. The model scalability and generalizability will 

be made stronger with further validation in other fields 

like the web applications, mobile and embedded systems. 
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