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ABSTRACT: Agile development involves rapid and dynamic regression testing to ensure that it
keeps pace with the frequent code changes and continuous integration. The traditional methods of test
case prioritization (TCP) rely on static historical data and thus cannot handle noisy logs, changing test
behavior, and inconsistent failure modes typical of Agile systems. In this paper, the authors describe a
hybrid approach to prioritization based on the combination of DBSCAN clustering and Q-learning as
the means of overcoming the two challenges, namely the quality of data and adaptability. DBSCAN
groups similar test cases and removes noise and Q-learning is used to train an execution order in each
cluster using a reward function balancing early fault detection and cost of execution. A mixed dataset
of approximately 15,000 test executions of both Defects4] and real CI pipeline are used to test the
model. Findings indicate that the given strategy attains an accuracy of 90.5 percent, APFD of 0.87, and
a decrease in the overall testing time of 28 percent, which outperform the Random, Greedy, and
DeepOrder baselines. It is lightweight and scalable with an easy deployment into CI/CD pipelines,
which makes it highly applicable in the contemporary Agile testing process.

Keywords: Test Case Prioritization, Agile Software Development, DBSCAN Clustering, Reinforcement Learning,

Predictive Analytics, CI/CD.

case prioritization, such as random ordering, rule-of-
thumb code coverage, or using historical test results, are
ineffective in the Agile environment. These methods tend
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INTRODUCTION
The wuse of agile software development

methodologies is the main foundation of contemporary
software development and offers an adaptable and
iterative approach to delivering as well as developing
software systems. The experience of Extreme
Programming (XP), Scrum, and Kanban allow
development teams to adapt to changing customer needs,
streamline the process of creating the product, and sustain
the feedback with the help of the software development
life cycle. Although Agile approaches are versatile, they
do pose greater problems in terms of quality assurance
where regression testing is concerned. The regular code
changes, the frequent integration and deployment
(CI/CD), and the short development cycles put an
increased burden on the testing cycle, and the regression
testing is one of the most time-consuming parts of the
Agile workflow.

Among these challenges, test case prioritization
is one of the major problem of Agile environment. This
study aligns with the emerging trend of integrating hybrid
machine learning and reinforcement techniques into Agile
test optimization. The process of determining the
optimum sequence for executing test cases to identify
defects early while minimizing the usage of time and
resources. However, traditional TCP methods of testing
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to be founded on fixed data, such as the failures that have
been experienced in the past or the opinion of experts,
and do not scale with the evolving lifetime of systems,
time-varying trends, and new tests.

These fixed methods, in turn, result in
unnecessary testing, long-term fault detection, increased
testing time, and the revelation of serious quality flaws in
the production process.

Agile projects further complicate TCP due to
incomplete or noisy test logs, flaky test results, and
inconsistent execution patterns. These issues undermine
the performance of static test prioritization methods. In
order to overcome these drawbacks, recent studies are
considering predictive analytics and machine learning
(ML) as smart, data-driven methodologies of test case
prioritization. Predictive analytics models are trained on
historical data, code changes, defect trends, and other test
metrics to identify the patterns and estimate the
possibility of defects for a particular test scenario.
Techniques such as gradient boosting, deep neural
networks, and random forests have shown improvement
in fault detection efficiency by learning fault-relevant
patterns dynamically. Nevertheless, these models
typically assume clean, labeled data and are usually
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trained offline, thus did not perform well in Agile
environments where data quality is not always high and
adjustments to decision making needed to be possible in
real time.

Although ML-based models follow supervised
learning paradigms requiring extensive labeled data, this
is often unavailable for Agile projects. They also lack
adaptability to real-time project changes, limiting their
scalability and responsiveness. Thus, there still exists a
dire need to have a smart TCP that is flexible, robust
against the associated noise, and scalable over dynamic
project conditions. Given these limitations, there was a
need for a model that can learn adaptively from noisy,

Data Processing

dynamic data and optimize test case selection in real
time.

To address these challenges, this study proposes
a hybrid test case prioritization framework that deals with
the dual problem of data quality and adaptability in Agile
TCP, combining unsupervised clustering (DBSCAN) and
reinforcement learning (Q-learning). The proposed model
integrates clustering-based data preprocessing with
adaptive reinforcement learning to achieve both
robustness and adaptability. As illustrated in Figure 1, the
workflow of the proposed hybrid model integrates
clustering and reinforcement learning for test case
prioritization.
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Figure 1: Working Principle of the Hybrid Model for Test Case Prioritization

Figure 1 illustrates the complete working
process of the proposed hybrid model for test case
prioritization. The workflow starts with data gathering of
Agile projects which comprises of test cases execution
logs, code change, defect reports and historical outcomes.
The preprocessing is then used to clean up noisy or
incomplete data. Analysis feature engineering identifies
such meaningful measures like code churn, defect rate,
and pass/fail history.

DBSCAN clustering is then used to consider
similar test cases as dense clusters and outliers, i.e. flaky
tests. This step makes sure that the input is structured and
high quality such that it can be prioritized without being
labeled manually. After clustering has been done, the Q-
learning agent continuously engages with the testing
environment. In every step, it picks a test case out of the
cluster, gets feedback on the cost of detecting defect and
cost of executing the test cases and revise its decision
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policy. In several episodes, the agent is informed of a
good prioritization order which results in early fault
detection and the minimum time taken to execute. Lastly,
the evaluation of prioritized results is done through
accuracy, APFD, NAPFD, and reduction of execution
time, and the product can be directly integrated into
CI/CD pipelines to be used in real-time.

This research aim as follows.

. Create a hybrid ML framework of dynamic TCP
in an Agile environment.

. Use multi-feature data (code changes, defect
history, execution metrics) for strong test case
prioritization.

. Measure performance with accuracy, APFD,
NAPFD and reduction of the time used in
testing.

. Make scaling and Agile CI/CD pipeline

integration possible.
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By proposing this hybrid solution, the study contributes
to the field in several ways:

J Proposed a hybrid model by connecting
DBSCAN clustering and Q-learning for test case
prioritization.

. Processed noisy and inconsistent test data using
density-based clustering techniques.

J Select dynamic test cases through reinforcement
learning with a reward-driven strategy.

J Use multi-feature inputs to improve fault
prediction accuracy and adaptability.

J Obtained high accuracy, APFD, and test time
reduction over baseline methods.

. Tested the model on large-scale Agile and open-
source benchmark data.

. Developed the framework for real-time

integration into CI/CD pipelines

This study is significant because it fills a critical
gap between the predictive techniques that are static and
the dynamic and real-world Agile testing requirements.
Although previous studies have either concentrated on
noise handling through clustering or prioritization
through reinforcement learning, this study is the first to
integrate both to produce a synergistic effect. With the
ongoing scaling of Agile development practices across
industries, the necessity of smart and responsive TCP
approaches is becoming more and more critical not only
to enhance the quality of software but also to ensure the
speed of delivery and customer satisfaction in the rapid
development cycles.

This research is designed as follows: Section 2
summarizes prior studies with examine current TCP
limitations for Agile environments. Section 3 presents the
proposal of the hybrid framework structure and
realization. Section 4 outlines the arrangement of
experiments, the sources of data, and the set of criteria.
Section 5 will show the results and discuss them in detail.
Finally, Section 6 concludes the paper with summaries of
extended research avenues, i.c., the inclusion of Natural
Language Processing (NLP) to derive test intent and to
fine-tune reward functions.

Related Work: Test Case Prioritization (TCP) aims to
order test cases so that faults are detected as early as
possible, reducing feedback time and resource
consumption in regression testing, as discussed by Yoo et
al. [1]. In Agile environments, frequent commits, rapid
iteration, and continuous integration significantly
increase the need for effective TCP, because test
outcomes, coverage patterns, and code behaviors change
quickly as described by Zhang et al. [2]. The demands of
contemporary CI/CD  pipelines increase these
requirements further with the need of fast, automated, and
flexible prioritization approaches that can keep up with
the development speed as reported by Sami et al. [3].
Traditional methods of prioritizing using static methods
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do not work well in these conditions because they rely on
a set of historical data and historical heuristics that Sharif
et al.[4] define as deeporder .

Recent studies have paid attention to machine-
learning-TCP that makes use of historical data to enhance
previous decisions during prioritization and respond to
the varying development conditions as Ajorloo et al.
described them in their study of machine-learning-TCP in
the paper of 2024 [5]. To exploit synergies of several
techniques, more recently hybrid methods are suggested,
especially clustering to reduce noise and reinforcement
learning to provide flexibility a more scalable and robust
alternative in dynamic settings as described by Fokrul et
al. [6]. This development is indicative of a larger
movement to smart, data-driven TCP options that can be
used in the Agile and CI/CD processes according to
Cheng et al. [7].

Challenges of Traditional TCP in Agile Environments:
The coverage-based heuristics, previous fault-detection-
based orderings, or predetermined rule-based
prioritization methods of traditional TCP remain
developed based on stable plan-driven development
processes as described by Arshad et al. [8]. Traditional
TCP methods coverage-based, previous faultdetection-
based  ordering, or pre-established rule-based
prioritization were originally designed to use in a stable
plan-driven development process. These methods are
efficient to identify faults when conditions remain
consistent, although when sprint cycles are small and
changes are continuous, they are ineffective as well as
fault detectors are concerned as explained by Mamata et
al. [9]. Since Agile processes are subject to continuous
adaptation, fixed strategies with recourse to historical
measurements usually become obsolete at every iteration
of the process as explained by Tawosi et al. [10]. A
significant issue is brought about by the fact that
historical testing data and the present state of the system
will not correlate the code is constantly evolving, and
past test results and coverage patterns will become very
unreliable in the present case, therefore, they are less
likely to succeed in test driving the present code as
described by Elbaum et al. [11]. A test case that is a
priority in one sprint can be outdated by the next because
of new features or refactoring as discussed by Rodr iguez
S’anchez et al. [12]. This old-fashioned priority may
make it take long to identify defects, perform
unnecessary test, and diminish the testing efficiency as
explained by Ajorloo et al. [5].

Agile environments also introduce data-quality
issues such as flaky tests, incomplete logs, and
inconsistent execution behavior as explained by Siddique
et al. [13]. Factors like flaky tests, partial logging, and
rapid iteration cycles reduce the reliability of historical
data that most of the traditional metrics are based as
described by Birchler et al. [14]. The data quality
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problems such as models that are based on predefined
heuristics will not identify the most critical test scenarios
properly, and leave untested faults, along with a lower
level of testing process efficiency, as discussed by
Rajasingh et al. [15]. CI/CD pipelines increase these
challenges, as test suites may execute multiple times per
day with limited time for computationally expensive
prioritization methods as shown by Chen et al. [16].
Traditional techniques lack the scalability and
responsiveness  required for  fast-moving agile
environments as described by Zhang et al. [17].

Empirical studies show the limitations of static
TCP in dynamic Agile contexts. Performance
inconsistencies arise from unstable test results and
shifting defect patterns as explained by Omri and Sinz
theorize [18]. Although clustering methods like
DBSCAN can group similar tests effectively, they cannot
adapt to changing project conditions without combining
adaptive algorithms like reinforcement learning as
discussed by Chen et al. [19]. These findings point to the
importance of hybrid approaches that balance noise
handling, scalability, and real-time adaptability.

TCP using Machine Learning: The field of machine
learning (ML) has made it into a highly discussed area in
order to overcome the shortcomings of the conventional
TCP methods. ML-based methods utilize the historical
execution process data and the dynamic software metrics,
to make more adaptive and informed decisions on
prioritization decisions in advance as presented by
Felding et al. [20]. The usefulness of ML in test case
prioritization was also mentioned by Singhal [21]. Unlike
static approaches, ML models can learn evolving patterns
in test outcomes, fault severity, code churn, and defect
density, enabling them to respond more effectively to
continuous change in Agile environments as outlined by
Mabhdieh et al.

[22].

TCP has a number of ML paradigms applied to
it. The supervised learning models are based on labelled
execution histories to forecast high-risk or fault-prone
test cases. Reinforcement learning (RL) views
prioritization as a sequence decision-making, where one
learns an optimal ordering policy based on the feedback
of performed tests as discussed by Pan et al. [23].
Clustering methods cluster similar tests together and they
share some similarity which allows noise to be reduced
and it also helps to manage the large test suites in a more
efficient way as argued by Li et al. [24]. Together these
strategies uphold the data-driven and adaptive manner of
the Agile development according to P.K. Gupta [25].

Supervised Learning Approaches:  Application
Supervised machine learning methods have been
extensively considered in TCP as they can be trained to
learn prioritization trends based on past test executions of
the tests as introduced by Felding et al. [26]. Common
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features of these methods are past fault detection,
execution time, test complexity and code coverage to
rank test cases as a more effective ranking methodology
as explained by Bugayenko et al. [27]. A prominent
example is DeepOrder using deep neural networks to
rank tests cases in a sequence according to past execution
results and can increase APFDs by up to 40 per cent on
industrial data sets as put across by Bajaj and Sangwan
[28]. Nevertheless, approaches such as DeepOrder can be
unsuccessful in quickly changing Agile settings because
they require consistent, collected training data and are not
so much flexible to changing test characteristics as
explained by by Khatibsyarbini et al. [29].

Other monitored models-such as Gradient
Boosting and Random Forest-have also been used on
TCP, wusing several test-level and code-level
characteristics to predict the possibility of fault-detection
potential with the use of multiple test-level and code-
level characteristics as discussed by Chen et al. [19].
These models were investigated by Tiutin as well [30].
Even though such models are effective under constant
conditions, they usually need large, clean and well-
labeled datasets. This is a problematic requirement in
Agile environments where test data can often be too
noisy, too incomplete, or too old-fashioned as discussed
by Gokilavani and Bharathi [31]. This difficulty was also
mentioned by Rosenbauer [32]. Consequently, pure
supervised methods might not be able to generalize in
dynamic CI/CD settings.

Reinforcement Learning (RL) for TCP: Reinforcement
Learning (RL) has become an attractive alternative to
supervised learning to TCP especially on Agile and
CI/CD setting where changes in system behavior occur
quickly at any given time of the day and night as
suggested by Su et al. [33]. In contrast to supervised
approaches, RL does not use labeled data; rather, it can
learn prioritization policies through interaction with the
environment and by getting reward signals, such as early
fault detection, less execution time, or better resource
utilization, as explained by Bagherzadeh et al. [34]. Such
a feedback-guided learning allows RL agents to
dynamically transform their decision-making strategies as
the Agile development is very dynamic and constantly
changing in nature as explained by Mirzaei and
Keyvanpour [35].

Recent experiments show that RL is effective in
the dynamic adaption of prioritization. Indicatively,
Bagherzadeh (2024) found that the rate of fault detection
improved by up to 50% in the CI pipelines, which
underscores the capability of RL to revise its policy
depending on the real-time execution patterns as found by
Yaraghi et al. [36]. Further enhancement such as time-
windowed reward functions enhance further RL
responsiveness to recent changes and fault trend variation
as suggested by Li et al. [37].
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Despite these advantages, RL has problems with
large-scale test suites. Real-time applicability can be
hampered by exploration costs, low convergence rates,
and the necessity of many iterations to explore the
phenomena and facilitate their future implementation and
application in real-time scenarios as explained by Han et
al. [38]. Incorporating RL into CI/CD pipelines can also
be engineered with lots of attention without adding delays
or computational overhead that could cause a disruption
of quick build cycles as explained by Pandhare et al. [39].
These drawbacks have led to the desire hybrid methods
that combine RL with techniques like clustering to
improve scalability.

Test Case Prioritization Clustering Techniques: TCP
extensively uses clustering methods especially the
unsupervised learning methods to maintain large and
diversified test repositories. Such algorithms as the
DBSCAN and K-Means cluster test cases based on their
features (e.g., execution time, failure rate, and similarity
of the code) and limit the decision space, allowing more
efficient prioritization processes to be carried out, a
feature of algorithms that are not new but has only
recently been embraced in research as outlined by Vescan
et al. [40].

DBSCAN, specifically, works well with test data
since it can find clusters and outliers without specifying
the number of clusters involved and irregular data
distribution can also be dealt with.

Hybrid types of clustering have been examined
with the aim of optimizing the performance of TCP.
Indicatively, Zhang and Chen (2023) integrated
DBSCAN with Firefly Optimization to rank tests within
clusters, and showed better APFD results with the help of
reinforcers as explained by Bagherzadeh et al. [34].
Nevertheless, these approaches are mostly stagnant and
cannot keep up with the constant changes prevalent in
Agile setting as explained by Wang and Zhang [41]. To
address this issue, Cluster-based Adaptive Prioritization
(CAP) strategies dynamically update cluster boundaries
and test priorities according to the latest test results and
code changes as explained by Vishwanath Karad et al.
[42]. Nevertheless, the majority of clustering-based TCP
models do not include the learning mechanisms such as
RL and can therefore not fine-tune their decisions using
feedback as it appears as described by Pan et al. [23].

Although clustering is useful in sorting large test
suites and in reducing redundancy, the fact that it is a
static concept restricts its adaptability to rapid Agile
workflows as noted by Gupta and Mahapatra [43]. Real-
time decision-making can not be done in pure clustering
methods which cannot dynamically respond to changing
fault patterns in real-time. All these limitations have
given rise to an increased desire to use hybrid methods
and introduce clustering with adaptive learning methods
to provide stability and responsiveness in the
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prioritization process together with stability and
responsiveness in the prioritization process as outlined by
Ahmad et al. [44].

Hybrid Approaches: Combining Strengths: Clusters
increased with reinforcement learning (RL) have been
popular in TCP study, especially in Agile frameworks
where scalability and flexibility must be ensured by
Singh et al. [45]. Clustering can be used to manage the
large test suites by grouping like test cases and RL can be
used to make adaptive decisions using real-time feedback
and long-term performance objectives as per Vescan et al.
[40].

A popular design is a hierarchical two stage
process where clustering is followed by prioritization
space reduction and a RL agent is used to decide the
sequence to be followed in each cluster. As an example,
Berisha (2024) and Prado Lima et al. [46] applied
clustering to create homogeneous groups of test cases and
further prioritized them using RL, which was applied
intra-cluster. ~ This  architecture = decreases  the
computational load and enables the prioritization policy
to adapt using the measured fault detection and execution
time measurements in sight of the data acquired during
execution and monitoring of faults as described by
Vescan et al. [47]. Such hybrid models have been
reported to lead to better fault detection and CI/CD
performance, based on empirical research, and have
demonstrated higher efficiency in these fields of study as
described by Chen et al. [48].

Based on this paradigm, the hybrid model
adopted in the present paper applies DBSCAN to find
natural clusters of test cases based on such features of
code churn, historical defects, and runtime data as code
churn, historical defects, and runtime data. In comparison
to K-Means, DBSCAN does not demand specification of
the number of clusters and is more efficient at noise and
outliers-common to Agile test data as explained by Tiutin
and Vescan [30]. Once clustering is completed, a Q-
learning agent ranks test cases in a cluster by a rewarding
function that is consistent with the Agile objectives: the
prompt detection of faults, less time to execute, and
adjustment to changing defect behavior. This
combination offers the benefit of scaling with clustering,
noise tolerance via DBSCAN, and adaptability with
continuous learning through RL. The approach is
appropriate to be applied to Agile workflows where
quick, adaptable, and contextual TCP is required due to
the localized decision-making process and the availability
of real-time feedback as outlined Li et al. [49].

Tools, Datasets, and Benchmarks: Benchmarking TCP
techniques has been performed on a number of datasets
and tools, with the most common ones being Defects4J,
LRTS, and Apache test suites described by Zhang et al.
[50]. The drawbacks of Defects4]J are especially common
because it has repeatable faults and detailed execution
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logs as explained by Han et al. [38]. Nevertheless, its
comparatively rigid structure does not make it applicable
to Agile environments, where codebases and test behavior
change at a high pace. More general discussions of TCP-
based methodologies point to the fact that most currently
available data do not cover Agile dynamics sufficiently
well described by Khatibsyarbini et al. [29].

Some researcher model development pipelines
based on synthetic data or mine execution traces of CI
systems like Jenkins to better model real-world behavior
in development pipelines, which are executed in practice
as proposed by Vescan et al. [51]. These sources have
more realistic presentations of the variating test results,
code fluctuations, and noisy logs that reflect closely well
the actual Agile workflows.

A similar weakness relates to evaluation
measures. The majority of TCP research is based on
APFD or NAPFD, which does not adequately capture
Agile principles, including time and scalability and real-
time responsiveness as projected by Rosenbauer et al.
[32]. Recent research suggests the development of more
rigorous evaluation criteria, including capture of
reduction in execution time, responsiveness, robustness in
the presence of dynamic conditions as stated by Li et al.
[49]. This wider range of metrics is proposed in the given
model that tries to offer a more realistic and Agile-
friendly measure of TCP performance as reported by
Yaraghi et al. [52].

Research Gaps and Motivation: Although there has
been progress in the domain of ML and RL-driven TCP,
there are a number of gaps to be filled when
implementing these techniques in Agile settings.
Scalability still remains a significant issue with RL
models usually needing a lot of training and potentially
not converging fast enough to allow quick development
cycles to occur on a model with a high level of scalability
at the same time as describes by Yaraghi et al. [52].
Another urgent concern is data quality: numerous models
expect clean, labeled data, but in Agile pipelines, test
results are often noisy, incomplete, or inconsistent in
most cases as described by Cheng et al. [53].

Many of the current approaches are also
restricted in terms of adaptability. The traditional or
semistatic models in most cases do not modify the
prioritization techniques based on the changing defect
patterns, changing codebases or changing patterns of
execution in most circumstances, such as test executions,
code-written patterns, and so forth as described by Igbal
and Al-Azzoni [54]. Moreover, real-world integration
with CI/CD pipelines is often not considered; only
several models can be used with lightweight and low-
overhead deployment that is critical in automated
processes when feedback and low latency are the key
factors to consider as described by Geetha et al. [55].
This requirement was also highlighted by Tasneem [56].
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Such gaps drive the necessity to have hybrid, adaptive,
and noise-tolerant TCP solutions that can be successfully
used in current Agile and CI/CD environments.

Proposed Methodology: The proposed hybrid model is a
variant of DBSCAN clustering that is integrated with the
Q-learning reinforcement learning addressing the issues
of Agile regression testing, such as noisy data, flaky tests,
and fast-changing codebases. The pipeline is based on six
stages: Data Collection, Preprocessing, Feature Selection,
Machine Learning (DBSCAN + Q-Learning), Model
Evaluation and Deployment (Figure 6). This workflow
guarantees the scalability and flexibility as well as the
openness to CI/CD platforms, including Jenkins, Azure
Devops, Docker, and Selenium.

After data collection and preprocessing, such as
removing duplicates, normalizing and treating flaky tests,
are completed, then the relevant features to include in the
model training are chosen. DBSCAN clusters group test
cases based on structural and behavioral similarities,
considering factors like past failures, code changes, and
execution patterns. Its density-based methodology
removes noise and finds clusters without specifying the
number of groups, and thus is appropriate to
heterogeneous Agile data.

In each cluster, Q-learning was used to establish
the best execution sequence by maximizing fault
detection (quantified through APFD) and minimizing the
cost of execution. DBSCAN with Q-learning allows its
application in reducing noise, adaptive prioritization, and
effective early fault detection on time.

Finally, the system is implemented within
CI/CD pipelines, where it constantly updates clusters and
recalculates prioritization policies using real-time
feedback. This guaranties continued flexibility in
modification of Agile development and enhances
accuracy, APFD, and total efficiency in regression
testing.

Overview of the Hybrid Model: The entire operational
workflow of the proposed method is shown in figure 2. It
begins by gathering heterogeneous Agile test data, and
then preprocessing (normalization, deduplication, flaky-
test detection). The features that are selected are sent to
DBSCAN to remove noise and cluster, and the Q-
learning algorithm is used to rank the tests within a
cluster. The model is updated by a feedback loop that
reacts on evaluation metrics (APFD, NAPFD, accuracy,
and execution time), making it possible to constantly
adapt it.

Dataset Collection: Open-source software repositories
and industrial Agile CI/CD environments, such as
Defects4], Apache Commons, DeepOrder GitHub CI
logs, and simulated Agile pipelines were used to gather
data. The combined data set has about 15,000 test runs
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with commit data, historical failure data, run time, code churn data, levels of defect severity, and test logs.

Table 1: Comparative Analysis of Recent Studies on Predictive Analytics for TCP in Agile Software Development.

Predictive Analytics ML/AI Method Focus on

Author Dataset TCP Agile/CI Adaptability Scalability
Yoo et al. [1] Literature survey Yes No Yes No No
Zhang et al. [2] Open-source logs (DBSCAN) No Yes Yes No No
Sami et al. [3] 0SS test suites No Yes Yes Yes No
Ajorloo et al. [5] Agile project data Yes Yes No Yes No
Cheng et al. [7] Long-running industrial test suites Yes Yes Yes Yes No
Arshad et al.[8] Industrial defect data Yes Yes No Yes No
Tawosi et al. [10] Survey data Yes No No Yes No
Rajasingh et al. [15] 0SS fault detection datasets No Yes Yes No No
Chen et al. [16] Historical execution info No Yes Yes No No
Felding et al. [20] Synthetic datasets No Yes Yes Yes Yes
Pan et al. [23] Cl log data No Yes Yes No No
Bugayenko et al. [27] 0SS task datasets Yes Yes No Yes No
Bajaj et al. [28] Synthetic test cases No Yes Yes No No
Felding et al. [26] OSS test data No Yes Yes Yes No
Khatibsyarbini et al. Literature re-[29] view Yes Yes Yes No No
Bagherzadeh et al. [34] Historical logs No Yes Yes Yes No
Gupta et al. [43] Unit + integration tests No Yes Yes No No
Bagherzadeh et al. [52] Open-source test suites No Yes Yes No No
Vescan et al. [40] Multiobjective test suites No Yes Yes Yes No
Prado Lima et al. [46] Configurable CI data Yes Yes Yes Yes No
Z. Zhang et al. [53] Open-source test logs No Yes Yes No No
Han et al. [38] Reinforcement learning  test data Yes Yes Yes Yes No
Vescan et al. [51] Regression test suites No Yes Yes No No
Li et al. [49] Semanticaware CI data No Yes Yes Yes Yes
Cheng et al. [53] Large OSS config test sets No Yes Yes No Yes
Qingran et al. [33] CI execution logs  from  open-source systems  No Yes Yes Yes Yes
Yaraghi et al. [36] TARBENCH: 45K tests, 59 projects No Yes No No No
Tasneem et al. [56] 76 studies from 5 databases Yes Yes No Yes No
Pandhare et al. [39] Synthetic CI tests (Mabl, Launchable) Yes Yes No Yes No
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This mixed data set is also indicative of the
diversity and heterogeneity of actual Agile processes and
ensures that the hybrid model is trained and tested under

Table 2: Summary of Datasets and Tools Used

real and heterogeneous testing conditions. Table 2
presents a detailed account of all the data sources and the
attributes that were recorded.

Source Repository/Tool Test Cases Data Collected

DeepOrder GitHub Java CI Projects 5,000 Historical CI logs, commit history,
and test failures

Defects4] Defects4] v2.0 Approx. 3,500 Test cases, real-world bugs, and

Benchmark patch history
Apache Commons Apache Commons Lang, Approx. 3,000 Bug report, Code revisions and test
Math coverage
Proposed Hybrid Simulated Agile Approx. 2,000 Regression testing, bug-fix data,
Model Projects and code changes

Preprocessing: Agile CI/CD pipelines are known to
produce a lot of noisy, inconsistent and incomplete test
data because of quick code change, unstable test
environment, and parallel execution. Hence, a strict
preprocess step was implemented in order to deliver high
quality input to both the DBSCAN clustering as well as
the Q-learning reinforcement model.

To eliminate redundant data, first, duplicate
records (2.4%) were eliminated to avoid an influence of
duplicate information on cluster density estimation. The
missing values (5.7%), which are typically present in
execution time logs and test results, were imputed using
mean imputation in the case of numerical attributes and
mode imputation in the case of categorical attributes.
Also, 3.1 percent of flaky tests-detected by inconsistent
pass/fail behavior under the same execution conditions
were eliminated to improve data stability and avoid
misleading reward signals during training

In order to equalize the heterogeneous numeric
features, Min-Max Normalization was used to normalize
all the numerical variables within a range [0,1]. This
action stabilizes the distance based -clustering of
DBSCAN and speeds up the convergence of Q-learning
because huge features are not allowed to dominate. The
normalization can be defined as:

_ X — Xmin

XScaled Xm'ch - Xmirl
Where X represents the original value of the feature, X,
and X, 1S the minimum and maximum value of the
feature observed.
Categorical variables (such as defect severity, type of the
test, etc) were coded with the one-hot encoding to avoid
ordinal bias and be compatible with both the clustering
and the reinforcement learning state representations. The
complete preprocessing was performed with the help of
Pandas, NumPy, and Scikit-learn, so that it can be easily
integrated with the reinforcement learning component of
TensorFlow.
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Feature Selection: In order to match the dynamic needs
of Agile, we have determined the most influential
features in three areas code changes (e.g., churn, commit
frequency), defect history (e.g., severity, recurrence), and
execution data (e.g., test runtime, recent failures).
Pearson’s Correlation Coefficient was used to assess
linear relationships, while Recursive Feature Elimination
(RFE) iteratively removes low-effect features. Both
techniques were implemented using Scikit-learn. The top
10 features were retained to maintain balance across
domains and increase the predictive accuracy of the
model.

Model Selection: The Machine Learning module
integrates DBSCAN clustering with Q-Learning
reinforcement learning to form an adaptive two-phase
prioritization strategy. DBSCAN first organizes test cases
into coherent structural groups, after which Q-Learning
optimizes the execution order within each cluster.
Algorithm 1 summarizes the complete hybrid workflow,
showing how clustering and reinforcement learning
interact to produce the final prioritized test suite.

DBSCAN Clustering: The first component of the
machine learning module applies DBSCAN to identify
groups of structurally and behaviorally similar test cases
based on density characteristics. This step corresponds to
the unsupervised ML component illustrated in Figure 2.
DBSCAN is well suited for Agile regression testing
because it does not require a predefined number of
clusters and is inherently robust to noise an important
advantage when dealing with heterogeneous, rapidly
changing test data as described by Ester et al. [57].
Unlike K-Means, DBSCAN does not depend on spherical
cluster assumptions or a predefined number of clusters,
making it more suitable for irregular and evolving Agile
test datasets. There were two important hyper parameters
that were tuned through grid search:

¢€[0.3,0.7,  MinPts € [3,7]
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Here, ¢ is the radius of the neighborhood that is used to
define the density connectivity and MinPts is the
minimum number of points that are needed to create a
dense region. The evaluation of the quality of clustering
was done with a Silhouette Score based measure that
evaluated the intracluster cohesion and the separation
between clusters. There were higher silhouette values,
which validated that the selected hyperparameters
produced and well structured clusters that can be used to
develop downstream reinforcement learning. DBSCAN
was provided on Scikit-learn, and Q-learning was
provided on TensorFlow.

Q-Learning Based Test Case Prioritization: After the
formation of clusters, Q-Learning is used in a cluster to
obtain an ideal order of execution of the test cases
contained in the cluster. This design is based on the
reinforcement-learning TCP approach that Spieker et al.
studied in continuous integration environment [58]. Q-
Learning is a cluster-level algorithm that minimizes the
computational costs and still provides fault-detection
capability.

The reward function used by the RL agent to evaluate
each action (i.e. which test case to execute next) is as
follows the early fault detection and cost of execution are
balanced:

R=w; - APFD — w, - Time
Where w; = 0.7 is used to maximise the Average
Percentage of Faults Detected (APFD) and w, = 0.3 is
used to discourage longer test execution times. This
incentive system encourages the process of focusing on
high-impact and low-cost tests, which are closely
associated with the Agile hardship demands.
The Q-values are solved through recurrence of the
Bellman optimality equation suggested by Watkins and
Dayan [59]:

foreach cluster Ci do

Initialize Q (s,a ) < 0;

for episode < 1to N do

Initializestate s;

while notterminal do
Chooseaction a using e-greedypolicy;
Executetestcase,measure
Computereward: R = w1 x APFD

Set s « s ;

| Ranktestcasesby @ -values;

Mergeprioritizedlistsfromallclusters;
return finalprioritizedtestsuite;

Q(s.a) + Q(s,a) + afr + ymaxQ(s',a’) — Q(s,a)]

where a = 0.1 is the learning rate and y = 0.9 is the
discount factor. The learning rate determines the speed at
which new experience impacts the policy of the agent,
whereas the discount factor ensures that the agent is not
greedy but optimizes over long-term goals.

This setup was directly equivalent to the Reinforcement
Learning (RL) block implemented in Figure 2, in which
the combination of DBSCAN-generated clusters, the
APFD time reward model, and the « = 0.1,y = 0.9
learning rate allows the generation of adaptive, data-
driven prioritization of test cases that would be suitable in
dynamic Agile CI/CD contexts.

Algorithmic Workflow: The full hybrid Test Case
Prioritization (TCP) algorithm presented in algorithm 1
combines the results of DBSCAN clustering along with
the adaptive Q-Learning decision-making. Each cluster is
processed independently, allowing the model to scale
effectively to large Agile test suites while maintaining
local adaptability and noise robustness.

Algorithm 1: Hybrid Clustering and Q-Learning Based
Test Case Prioritization

Input: Clusters Cy,G,,...,C,
Output: Final prioritized test suite

Initialize: o = 0.1, y = 0.9, w; = 0.7, w,= 0.3, episodes =
100, €=10.1;

Define:;

State s: current test case and its features;

Action a: select next test case;

Terminal state: all test cases executed or testing budget
exhausted;

APFD and Time ;
- w2 X Time ;
Update Q (s,a ) usingtheBellmanequation;

Baseline Methods: To analyze the effectiveness of the
suggested hybrid model (DBSCAN + Q-learning)
comparing with four widely adopted baselines that
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represent heuristic, metaheuristic, and machine learning
families.
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Random Prioritization: A lower-bound baseline that
executes test cases in random order. It is included in
almost all TCP studies as a minimal reference for early
fault detection performance [80], [81]. Its weakness lies
in a complete lack of learning or adaptation, resulting in
poor fault detection.

Greedy Additional (Additional Coverage): A classical
heuristic that iteratively selects the test case providing the
maximum additional coverage or fault detection with
respect to already executed tests [81]. It is efficient and
historically forms the benchmark in regression testing.
However, it is fixed and fails to keep up with changing
Agile pipelines.

Deep Learning-Based TCP (DeepOrder): A strategy
based on learning using historical CI logs to learn neural

Table 3: Baseline Comparison Matrix

models to predict the best test sequences. It embodies the
current state of the art in ML-based TCP, however, it
demands very big training datasets and great computation
capabilities which limits the scalability when the resource
is scarce.

Proposed Hybrid Model (DBSCAN + Q-learning): In
the first stage of our method, we cluster test cases
together with the help of DBSCAN and use the Q-
learning method in each cluster to select the tests
adaptively. The reward function balances the early fault
detection (APFD) and the execution time. In comparison
with baselines, this hybrid model is scalable, noise
resistant and adaptable to Agile CI/CD pipelines.

Method Type Strengths Limitations
Random Heuristic Simple; provides a lower bound Very poor detection rate; no
(baseline) adaptation

Greedy Additional Heuristic Widely used; efficient for small Static; not adaptive to Agile
test suites dynamics

GA-TCP Metaheuristic Finds optimized prioritization Computationally expensive; slow
sequences for CI/CD

DeepOrder (2021) Deep Learning Learns from CI logs; strong Requires large datasets; resource
empirical performance heavy

Proposed Hybrid Hybrid ML+ RL  Adaptive, scalable, robust to More complex implementation;

(DBSCAN + Q- noisy Agile data requires retraining

learning)

Model Testing: To rigorously evaluate the performance
of the proposed hybrid model, the dataset was divided
into a training set (80%) and a testing set (20%). A 5-fold
cross-validation strategy was employed to reduce the risk
of overfitting and to ensure that the learned prioritization
policy generalizes effectively across varying Agile
project conditions. Each experiment was run 30 times
with various random seeds, which admits stochastic
variations to average due to clustering density threshold
and exploration of reinforcement learning. The standard
deviation and the mean are used to report the results
obtained after running.

The paired t-tests at 95 percentage confidence level of p
< 0.05 were performed to determine whether the
proposed approach improved statistically significant
improvements over the baseline techniques. This
statistical testing will make sure that the apparent
improvements are not because of randomness but rather
that there are improvements in performance.

The model was tested on the basis of four
popular indicators in Test Case Prioritization (TCP)
studies, Accuracy, APFD, NAPFD, and Testing Time
Reduction. These measures are correctness, the ability to
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detect faults, the ability to operate under restriction, and
computational savings, respectively.

Accuracy: Accuracy is a measure of the percentage of
ordered test cases that are correct as compared to an ideal
prioritization. It measure the consistency of the learned
policy to meaningful sequences of execution:

Number of Correctly Prioritized Test Cases
Accuracy = X
100.

Total Test Cases
The accuracy is due to the fact that TCP not only
attempts to identify faults at an early stage but also to
generate logically consistent, stable rankings over the
iterations.

Average Percentage of Faults Detected (APFD): APFD
is used to measure the rate at which faults are discovered
when running the tests. It is a conventional benchmark
measure proposed by Rothermel et al. [60] and still one
of the most powerful TCP measures. APFD values are

higher, which means faster fault detection:
mLTF 1
ApFD =1 2= TH 1

n-m 2n

>
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Where TF; is the index of the initial test case which
identifies fault i, n is the overall count of test cases, and m
is the overall count of faults. This indicator is necessary
since early detection leads to direct saving of debugging
time and avoidance of the spread of faults during Agile
CI/CD cycles.

Normalized APFD (NAPFD): NAPFD builds upon
APFD to support the situation of partial execution of
budgets or detecting partial fault. This is especially
appropriate to Agile pipelines whereby full test can be
curtailed because of time boxed sprints often restrict full
test suite execution. It is computed as:
NAPFD — APFD — APF Dy
APFDmax - APFDmin.

The normalization also guarantees the comparability of
the results across datasets, fault densities and time
constraints, which is a drawback of raw APFD in
restricted environment.

Testing Time Reduction: To evaluate computational
efficiency is measured by how much the total execution
time is reduced when comparing it to the techniques used
as a baseline:

Tbaseline — Tproposed

Time Reduction = x 100,
Tbaseline

Where Thasenine represents the runtime of a conventional

approach ( random or greedy ordering) and 7Tjoposed 1S the

runtime using the hybrid model. This metric is critical for

Agile workflows, where regression testing constitutes a

major portion of sprint time, and reductions directly

translate to faster delivery cycles.

Statistical Significance Testing: In order to test the
reliability of performance improvements, paired t-test
was used:

Table 4: Performance Comparison of TCP Techniques

o d
NG

where d is the mean difference across paired
observations, S, is the standard deviation of differences,
and 7 is the number of experimental repetitions. Using
paired tests ensures fair comparisons because each
technique is evaluated on identical data partitions and
random seeds.

t

Research Setup: These experiments were conducted on
Windows 10, Intel Core i7, 16 GB RAM and NVIDIA
GTX 1080. The system is built on Python 3.9,
TensorFlow 2.10, relating to reinforcement learning,
Scikitlearn 1.2, concerning clustering methods, and
Selenium 4.8 to run automated tests by using remote web
driver. Version control was done using GitHub and results
were visualized using Matplotlib. The dataset contained
10,000 Agile test cases (through Jira and Azure DevOps)
and 5,000 test cases of the Defects4] benchmark. The
variety of the sources enabled practical, representative
assessment of the hybrid model in Agile conditions.

RESULT

To assess the efficiency of the proposed hybrid
model, three benchmark techniques, Random Selection,
Greedy (Additional Coverage), and DeepOrder (a Deep
Learning-Based TCP), were compared. The performance
was assessed using four key metrics: Accuracy, APFD
(Average Percentage of Faults Detected), NAPFD
(Normalized APFD), and Testing Time Reduction. Table
6.1 provide the numerical results summary.

Technique Accuracy (%) APFD NAPFD Testing Time Reduction
Random Selection 52.0 0.48 0.62 5%
Greedy Algorithm 68.0 0.65 0.71 12%
DeepOrder 81.0 0.78 0.84 18%
Proposed Hybrid Model 90.5 0.87 0.905 28%

The hybrid model had the highest APFD (0.87),
which means that this model can identify early fault
detection. Its NAPFD of 0.905 demonstrates good short-
term progress in priorities. It has a high degree of
prediction accuracy of 90.5%, which indicates many
indications of reliability in the calculation of optimal test
performance orders. Most significantly, it was able to
reduce the time of test execution by 28, which was better
than DeepOrder (18 percent), Greedy (12 percent), and
Random (5 percent). These findings were graphically
represented in Figures 3, 4, and 5, which give a
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comparative bar chart of all the four metrics and
techniques.

Accuracy and Testing Time Reduction: The
comparative results of Accuracy and Testing Time
Reduction are shown in Figure 3 The hybrid model
proposed has an accuracy of 90.5%, which is a 73.9%
relative improvement over Random Selection, a 32.9%
improvement over Greedy, and an 11.7% improvement
over DeepOrder.
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Figure 3: Working principle of the hybrid model for test case prioritization.

In terms of Time Reduction in the Testing, the
hybrid model scores 28, which is much higher than
DeepOrder (18) by 55.5, Greedy (12) by 133 and
Random (5) by an astonishing 460. This is a clear pointer
that the hybrid approach not only enhances the reliability
of prediction but also makes the execution of the hybrid
approach highly effective in Agile environments.

APFD and NAPFD: Figure 4 show the relative
performance of the four techniques based on APFD and
NAPFD measure. The hybrid model achieved an APFD
of 0.87, which is 81% higher than Random Selection
(0.48), 34% better than Greedy (0.65), and 11.5%
superior to DeepOrder (0.78).

3.
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0.5
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03
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0.1
0
APFD
M Random Selection

M Greedy Agorithm  ® Deep Order

NAPFD

W Proposed Hybrid Model

Figure 4: Comparative performance of TCP techniques in APFD and NAPFD

Similarly, in the case of NAPFD, the hybrid
model records 0.905, outperforming Random Selection
(0.62) by 46%, Greedy (0.71) by 27.4%, and DeepOrder
(0.84) by 7.7%. These results prove that the hybrid
method ensures earlier and more reliable in fault
detection, which is a significant aspect of reducing
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debugging costs in Continuous Integration/Continuous
Deployment (CI/CD) pipelines.

Overall Comparison of TCP Techniques: The overall
visual comparison indicates clearly that the proposed
hybrid model is always better than all baselines in terms
of accuracy, fault detection effectiveness, and reduction
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of testing time. One-way ANOVA of all four techniques
and metrics produced p < 0.001, which proved that there
are significant differences in general. Additional post-hoc

Tukey tests demonstrated that the hybrid model is much
better (p < 0.01) in all pairwise comparisons.
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Figure 5: Overall Comparison of TCP Techniques

Overall, the proposed hybrid model shows
statistically significant improvements in all evaluation
metrics compared to current methods. In terms of
accuracy achieves an improvement of 11.7% over
DeepOrder, 32.9% over Greedy, and 73.9% over Random
selection. The model save testing time, with 55.5%
improvement over DeepOrder, 133% over Greedy, and an
incredible 460% compared to Random. In fault detection
efficiency, the model also has an APFD increase of 11.5%
relative to DeepOrder, 34% relative to Greedy and 81%
relative to Random. Its NAPFD score also shows a great
improvement as it is better than DeepOrder by 7.7,
Greedy by 27.4, and Random by 46. All these results
support the power, efficiency, and adaptability of the
proposed hybrid model in Agile software testing. The
model is a combination of clustering and reinforcement
learning, which is why it is an effective solution to the
issue of noisy data, frequent code changes, and CI/CD
pipeline constraints, and, therefore, a viable and scalable
solution to the problem of test case prioritization in the
real world.

DISCUSSION

The hybrid model demonstrates that combining
density-based clustering with reinforcement learning
provides a robust solution for agile test case
prioritization. DBSCAN contributed by filtering noise,
identifying structurally coherent groups of test cases, and
capturing behavioral similarities that traditional distance-
based or supervised techniques fail to model. Q-Learning
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then built on these clusters to adaptively select test cases
that maximize fault detection while accounting for
execution cost, resulting in a more efficient use of limited
testing budgets in fast-paced CI/CD environments.

These results comprise a wise observation that
noise-conscious grouping and subsequent adaptive
decision making generate a more robust prioritization
approach compared to both methods individually. This
enables the model to be stable even when it is faced with
flaky tests, incomplete logs and frequent code changes
issues that greatly impair the performance of deep
learning-based system like DeepOrder which heavily
depends on clean and large-scale historical data.

Although it has its advantages, the strategy has
some drawbacks. DBSCAN is sensitive to the selection
of both ¢ and MinPt, and the improper choice of these
parameters can result in fragmented or oversized clusters.
Also, Q-Learning can be slow to converge in cases the
test environment is constantly changing, which is typical
of Agile teams that apply rapid iteration. Adequately,
various datasets are also relied on in the model; hence, its
capabilities could be limited during the initial phases of
projects where historical testing data are limited.

The research deals with significant threats to
validity through rigorous preprocessing, trialing, and
testing of statistical significance. Nevertheless, how much
a person can generalize his results outside the datasets
that were used specifically to non Java projects or
possibly industrial systems with varying architectural
properties is yet to be tested further.
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Altogether, the hybrid model adds a feasible and
theory-founded model applicable to the reality CI/CD
pipelines. Its adaptability (and noise tolerance) strengths
make it suitable in areas where reliability and quick
feedback is paramount.

Threats to Validity: There are a number of possible
threats to validity of this study. Internal validity might
have been affected by the choice of DBSCAN parameters
(¢ € [0.3,0.7], MinPts € [3,7]) and Q-learning hyper
parameters (o = 0.1, y = 0.9). Although grid search
(Section 24) was used to tune parameters, alternative
settings may create effects. To reduce this, we repeated it
30 times, and we used statistical testing (¢ = 3.45, p <
0.01) to verify that this is significant.

The datasets that are applied to external validity
are Defects4)J, Apache Commons, and simulated Agile
CI/CD projects (Section 26). Although these are common
benchmarks, they might not be applicable to other areas
like embedded systems, mobile platforms or large-scale
industrial pipelines. We plan to continue validation using
larger datasets in future work.

Construct validity comes as a result of metrics
used in the evaluation. The quality of fault detection and
prioritization is well-quantified by APFD, NAPFD and
accuracy yet is not comprehensive in terms of the CI/CD-
specific dimensions (developer effort, pipeline latency, or
resource consumption). Other measures will be used in
further research to enhance construct coverage.

The validity of the conclusion can be influenced
by the distribution of data and the possible sampling bias.
Agile data is able to change rapidly hence model
retraining was also added as a prevention measure.
Regular retraining also keeps the performance consistent
within the dynamic nature of project environment.

Deployment: To enable practical adoption in real Agile
software engineering workflows, the proposed hybrid
model is deployed as a lightweight Python-based
microservice integrated directly into CI/CD pipelines.
The deployment architecture is designed to ensure
automated prioritization of test cases , smooth scalability,
consistency in the environment and low operational
overhead.

The overall deployment pipeline is shown in
figure 6. The trained model, which is put in a Docker
container, is connected to CI/CD systems, including
Jenkins and Azure DevOps. Depending on each code
commit or pull request, the CI server invokes the
microservice which polls the existing repository states,
source-code modifications, and last run executions. The
preprocessing and clustering phases are carried out
automatically and Q-learning produces a new prioritized
test suite, which is submitted to automation frameworks
like Selenium to execute.

The system facilitates periodic retraining of the
reinforcement learning agent whether on a periodic basis
(usually monthly) or in case major changes in fault
patterns, code churn, or test suite behavior are observed.
This will make sure that prioritization policies are in line
with the changing Agile development trends. The real-
time feedback and performance auditing is achieved due
to constant tracking of key performance indicators, such
as APFD and cumulative execution time.

Docker containerization allows the similarity in
deployment across staging, production and development
platforms as well as facilitating portability, microservice
chaining and horizontal scaling, in order to mitigate the
testing workload. The design is in agreement with the
modern DevOps and Agile delivery.
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Figure 6: Proposed Hybrid Model Deployment Architecture in CI/CD Environments.
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A typical Python endpoint that is used to call the DBSCAN-based clustering and Q-learning prioritization

microservice is provided in Listing 1.

Listing 1: Python Endpoint for Q-learning Based Test Prioritization

@app.route(’/prioritize’, methods=["POST’]) def prioritize tests():
data = request.get json() test_features = preprocess(data) clusters =
dbscan.fit_predict(test features) prioritized_tests = {} for cluster id in
set(clusters):

cluster_data = test_features[clusters == cluster_id] priorities =
q_learning_rank(cluster data) prioritized_tests[cluster id] = priorities
return jsonify(prioritized tests)

The deployment container is defined using the Docker configuration shown in Listing 2, enabling consistent execution

across heterogeneous environments:

Listing 2: Dockerfile for Deployment Container

FROM python:3.10

WORKDIR /app COPY . /app
RUN pip install -r requirements.txt
CMD ["python", "app.py"]

The given deployment workflow shows that the
suggested hybrid model is not merely a theoretical
construct but can be deployed into the real-world [2]
industrial pipelines to provide an automated, scalable,
and adaptive way of regression testing within the Agile
CI/CD framework.

Conclusion with Future Direction: This paper presented
a hybrid model combining test case prioritization,
DBSCAN clustering, and Qlearning-based reinforcement
learning to address the challenges facing the Agile
software development process. The suggested model
showed the following important gains, including 90.5%
accuracy, APFD of 0.87, and the minimization of the test
time by 28%. The superiority of the model over
traditional and deep learning based models is due to the
structural arrangement of clustering applications and
adaptive learning features of reinforcement learning, the
model, which is vital in dynamic, CI/CD-based Agile
environments. Future work will improve the model
intelligence by integrating Natural Language Processing
(NLP) for deriving semantic insights from user stories
and linking them to relevant test cases. Also, the use of
online learning methods can be used to reduce model
drift as time goes by, and this guarantees constant
flexibility. The model scalability and generalizability will
be made stronger with further validation in other fields
like the web applications, mobile and embedded systems.
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