
Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 95

A HYBRID MODEL USING CLUSTERING AND REINFORCEMENT LEARNING FOR

TEST CASE PRIORITIZATION IN AGILE ENVIRONMENTS

M. S. Nadeem
a,∗ M. A. Farooq

b,∗ and S. Afzal
c,∗

a
Department of Computer Science, University of Engineering and Technology, Lahore, Pakistan

b
Institute of Data

Science, University of Engineering and Technology, Lahore, Pakistan
c
Department of Computer Science, University of Engineering and Technology, Lahore, Pakistan ∗Corresponding authors.

These authors contributed equally to this work

ABSTRACT: Agile development involves rapid and dynamic regression testing to ensure that it

keeps pace with the frequent code changes and continuous integration. The traditional methods of test

case prioritization (TCP) rely on static historical data and thus cannot handle noisy logs, changing test

behavior, and inconsistent failure modes typical of Agile systems. In this paper, the authors describe a

hybrid approach to prioritization based on the combination of DBSCAN clustering and Q-learning as

the means of overcoming the two challenges, namely the quality of data and adaptability. DBSCAN

groups similar test cases and removes noise and Q-learning is used to train an execution order in each

cluster using a reward function balancing early fault detection and cost of execution. A mixed dataset

of approximately 15,000 test executions of both Defects4J and real CI pipeline are used to test the

model. Findings indicate that the given strategy attains an accuracy of 90.5 percent, APFD of 0.87, and

a decrease in the overall testing time of 28 percent, which outperform the Random, Greedy, and

DeepOrder baselines. It is lightweight and scalable with an easy deployment into CI/CD pipelines,

which makes it highly applicable in the contemporary Agile testing process.

Keywords: Test Case Prioritization, Agile Software Development, DBSCAN Clustering, Reinforcement Learning,

Predictive Analytics, CI/CD.

(Received 01.10.2025 Accepted 01.12.2025)

INTRODUCTION

 The use of agile software development

methodologies is the main foundation of contemporary

software development and offers an adaptable and

iterative approach to delivering as well as developing

software systems. The experience of Extreme

Programming (XP), Scrum, and Kanban allow

development teams to adapt to changing customer needs,

streamline the process of creating the product, and sustain

the feedback with the help of the software development

life cycle. Although Agile approaches are versatile, they

do pose greater problems in terms of quality assurance

where regression testing is concerned. The regular code

changes, the frequent integration and deployment

(CI/CD), and the short development cycles put an

increased burden on the testing cycle, and the regression

testing is one of the most time-consuming parts of the

Agile workflow.

 Among these challenges, test case prioritization

is one of the major problem of Agile environment. This

study aligns with the emerging trend of integrating hybrid

machine learning and reinforcement techniques into Agile

test optimization. The process of determining the

optimum sequence for executing test cases to identify

defects early while minimizing the usage of time and

resources. However, traditional TCP methods of testing

case prioritization, such as random ordering, rule-of-

thumb code coverage, or using historical test results, are

ineffective in the Agile environment. These methods tend

to be founded on fixed data, such as the failures that have

been experienced in the past or the opinion of experts,

and do not scale with the evolving lifetime of systems,

time-varying trends, and new tests.

 These fixed methods, in turn, result in

unnecessary testing, long-term fault detection, increased

testing time, and the revelation of serious quality flaws in

the production process.

 Agile projects further complicate TCP due to

incomplete or noisy test logs, flaky test results, and

inconsistent execution patterns. These issues undermine

the performance of static test prioritization methods. In

order to overcome these drawbacks, recent studies are

considering predictive analytics and machine learning

(ML) as smart, data-driven methodologies of test case

prioritization. Predictive analytics models are trained on

historical data, code changes, defect trends, and other test

metrics to identify the patterns and estimate the

possibility of defects for a particular test scenario.

Techniques such as gradient boosting, deep neural

networks, and random forests have shown improvement

in fault detection efficiency by learning fault-relevant

patterns dynamically. Nevertheless, these models

typically assume clean, labeled data and are usually

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 96

trained offline, thus did not perform well in Agile

environments where data quality is not always high and

adjustments to decision making needed to be possible in

real time.

 Although ML-based models follow supervised

learning paradigms requiring extensive labeled data, this

is often unavailable for Agile projects. They also lack

adaptability to real-time project changes, limiting their

scalability and responsiveness. Thus, there still exists a

dire need to have a smart TCP that is flexible, robust

against the associated noise, and scalable over dynamic

project conditions. Given these limitations, there was a

need for a model that can learn adaptively from noisy,

dynamic data and optimize test case selection in real

time.

 To address these challenges, this study proposes

a hybrid test case prioritization framework that deals with

the dual problem of data quality and adaptability in Agile

TCP, combining unsupervised clustering (DBSCAN) and

reinforcement learning (Q-learning). The proposed model

integrates clustering-based data preprocessing with

adaptive reinforcement learning to achieve both

robustness and adaptability. As illustrated in Figure 1, the

workflow of the proposed hybrid model integrates

clustering and reinforcement learning for test case

prioritization.

Figure 1: Working Principle of the Hybrid Model for Test Case Prioritization

 Figure 1 illustrates the complete working

process of the proposed hybrid model for test case

prioritization. The workflow starts with data gathering of

Agile projects which comprises of test cases execution

logs, code change, defect reports and historical outcomes.

The preprocessing is then used to clean up noisy or

incomplete data. Analysis feature engineering identifies

such meaningful measures like code churn, defect rate,

and pass/fail history.

 DBSCAN clustering is then used to consider

similar test cases as dense clusters and outliers, i.e. flaky

tests. This step makes sure that the input is structured and

high quality such that it can be prioritized without being

labeled manually. After clustering has been done, the Q-

learning agent continuously engages with the testing

environment. In every step, it picks a test case out of the

cluster, gets feedback on the cost of detecting defect and

cost of executing the test cases and revise its decision

policy. In several episodes, the agent is informed of a

good prioritization order which results in early fault

detection and the minimum time taken to execute. Lastly,

the evaluation of prioritized results is done through

accuracy, APFD, NAPFD, and reduction of execution

time, and the product can be directly integrated into

CI/CD pipelines to be used in real-time.

This research aim as follows.

• Create a hybrid ML framework of dynamic TCP

in an Agile environment.

• Use multi-feature data (code changes, defect

history, execution metrics) for strong test case

prioritization.

• Measure performance with accuracy, APFD,

NAPFD and reduction of the time used in

testing.

• Make scaling and Agile CI/CD pipeline

integration possible.

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 97

By proposing this hybrid solution, the study contributes

to the field in several ways:

• Proposed a hybrid model by connecting

DBSCAN clustering and Q-learning for test case

prioritization.

• Processed noisy and inconsistent test data using

density-based clustering techniques.

• Select dynamic test cases through reinforcement

learning with a reward-driven strategy.

• Use multi-feature inputs to improve fault

prediction accuracy and adaptability.

• Obtained high accuracy, APFD, and test time

reduction over baseline methods.

• Tested the model on large-scale Agile and open-

source benchmark data.

• Developed the framework for real-time

integration into CI/CD pipelines

 This study is significant because it fills a critical

gap between the predictive techniques that are static and

the dynamic and real-world Agile testing requirements.

Although previous studies have either concentrated on

noise handling through clustering or prioritization

through reinforcement learning, this study is the first to

integrate both to produce a synergistic effect. With the

ongoing scaling of Agile development practices across

industries, the necessity of smart and responsive TCP

approaches is becoming more and more critical not only

to enhance the quality of software but also to ensure the

speed of delivery and customer satisfaction in the rapid

development cycles.

 This research is designed as follows: Section 2

summarizes prior studies with examine current TCP

limitations for Agile environments. Section 3 presents the

proposal of the hybrid framework structure and

realization. Section 4 outlines the arrangement of

experiments, the sources of data, and the set of criteria.

Section 5 will show the results and discuss them in detail.

Finally, Section 6 concludes the paper with summaries of

extended research avenues, i.e., the inclusion of Natural

Language Processing (NLP) to derive test intent and to

fine-tune reward functions.

Related Work: Test Case Prioritization (TCP) aims to

order test cases so that faults are detected as early as

possible, reducing feedback time and resource

consumption in regression testing, as discussed by Yoo et

al. [1]. In Agile environments, frequent commits, rapid

iteration, and continuous integration significantly

increase the need for effective TCP, because test

outcomes, coverage patterns, and code behaviors change

quickly as described by Zhang et al. [2]. The demands of

contemporary CI/CD pipelines increase these

requirements further with the need of fast, automated, and

flexible prioritization approaches that can keep up with

the development speed as reported by Sami et al. [3].

Traditional methods of prioritizing using static methods

do not work well in these conditions because they rely on

a set of historical data and historical heuristics that Sharif

et al.[4] define as deeporder .

 Recent studies have paid attention to machine-

learning-TCP that makes use of historical data to enhance

previous decisions during prioritization and respond to

the varying development conditions as Ajorloo et al.

described them in their study of machine-learning-TCP in

the paper of 2024 [5]. To exploit synergies of several

techniques, more recently hybrid methods are suggested,

especially clustering to reduce noise and reinforcement

learning to provide flexibility a more scalable and robust

alternative in dynamic settings as described by Fokrul et

al. [6]. This development is indicative of a larger

movement to smart, data-driven TCP options that can be

used in the Agile and CI/CD processes according to

Cheng et al. [7].

Challenges of Traditional TCP in Agile Environments:

The coverage-based heuristics, previous fault-detection-

based orderings, or predetermined rule-based

prioritization methods of traditional TCP remain

developed based on stable plan-driven development

processes as described by Arshad et al. [8]. Traditional

TCP methods coverage-based, previous faultdetection-

based ordering, or pre-established rule-based

prioritization were originally designed to use in a stable

plan-driven development process. These methods are

efficient to identify faults when conditions remain

consistent, although when sprint cycles are small and

changes are continuous, they are ineffective as well as

fault detectors are concerned as explained by Mamata et

al. [9]. Since Agile processes are subject to continuous

adaptation, fixed strategies with recourse to historical

measurements usually become obsolete at every iteration

of the process as explained by Tawosi et al. [10]. A

significant issue is brought about by the fact that

historical testing data and the present state of the system

will not correlate the code is constantly evolving, and

past test results and coverage patterns will become very

unreliable in the present case, therefore, they are less

likely to succeed in test driving the present code as

described by Elbaum et al. [11]. A test case that is a

priority in one sprint can be outdated by the next because

of new features or refactoring as discussed by Rodr´ıguez

S´anchez et al. [12]. This old-fashioned priority may

make it take long to identify defects, perform

unnecessary test, and diminish the testing efficiency as

explained by Ajorloo et al. [5].

 Agile environments also introduce data-quality

issues such as flaky tests, incomplete logs, and

inconsistent execution behavior as explained by Siddique

et al. [13]. Factors like flaky tests, partial logging, and

rapid iteration cycles reduce the reliability of historical

data that most of the traditional metrics are based as

described by Birchler et al. [14]. The data quality

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 98

problems such as models that are based on predefined

heuristics will not identify the most critical test scenarios

properly, and leave untested faults, along with a lower

level of testing process efficiency, as discussed by

Rajasingh et al. [15]. CI/CD pipelines increase these

challenges, as test suites may execute multiple times per

day with limited time for computationally expensive

prioritization methods as shown by Chen et al. [16].

Traditional techniques lack the scalability and

responsiveness required for fast-moving agile

environments as described by Zhang et al. [17].

 Empirical studies show the limitations of static

TCP in dynamic Agile contexts. Performance

inconsistencies arise from unstable test results and

shifting defect patterns as explained by Omri and Sinz

theorize [18]. Although clustering methods like

DBSCAN can group similar tests effectively, they cannot

adapt to changing project conditions without combining

adaptive algorithms like reinforcement learning as

discussed by Chen et al. [19]. These findings point to the

importance of hybrid approaches that balance noise

handling, scalability, and real-time adaptability.

TCP using Machine Learning: The field of machine

learning (ML) has made it into a highly discussed area in

order to overcome the shortcomings of the conventional

TCP methods. ML-based methods utilize the historical

execution process data and the dynamic software metrics,

to make more adaptive and informed decisions on

prioritization decisions in advance as presented by

Felding et al. [20]. The usefulness of ML in test case

prioritization was also mentioned by Singhal [21]. Unlike

static approaches, ML models can learn evolving patterns

in test outcomes, fault severity, code churn, and defect

density, enabling them to respond more effectively to

continuous change in Agile environments as outlined by

Mahdieh et al.

[22].

 TCP has a number of ML paradigms applied to

it. The supervised learning models are based on labelled

execution histories to forecast high-risk or fault-prone

test cases. Reinforcement learning (RL) views

prioritization as a sequence decision-making, where one

learns an optimal ordering policy based on the feedback

of performed tests as discussed by Pan et al. [23].

Clustering methods cluster similar tests together and they

share some similarity which allows noise to be reduced

and it also helps to manage the large test suites in a more

efficient way as argued by Li et al. [24]. Together these

strategies uphold the data-driven and adaptive manner of

the Agile development according to P.K. Gupta [25].

Supervised Learning Approaches: Application

Supervised machine learning methods have been

extensively considered in TCP as they can be trained to

learn prioritization trends based on past test executions of

the tests as introduced by Felding et al. [26]. Common

features of these methods are past fault detection,

execution time, test complexity and code coverage to

rank test cases as a more effective ranking methodology

as explained by Bugayenko et al. [27]. A prominent

example is DeepOrder using deep neural networks to

rank tests cases in a sequence according to past execution

results and can increase APFDs by up to 40 per cent on

industrial data sets as put across by Bajaj and Sangwan

[28]. Nevertheless, approaches such as DeepOrder can be

unsuccessful in quickly changing Agile settings because

they require consistent, collected training data and are not

so much flexible to changing test characteristics as

explained by by Khatibsyarbini et al. [29].

 Other monitored models-such as Gradient

Boosting and Random Forest-have also been used on

TCP, using several test-level and code-level

characteristics to predict the possibility of fault-detection

potential with the use of multiple test-level and code-

level characteristics as discussed by Chen et al. [19].

These models were investigated by Tiutin as well [30].

Even though such models are effective under constant

conditions, they usually need large, clean and well-

labeled datasets. This is a problematic requirement in

Agile environments where test data can often be too

noisy, too incomplete, or too old-fashioned as discussed

by Gokilavani and Bharathi [31]. This difficulty was also

mentioned by Rosenbauer [32]. Consequently, pure

supervised methods might not be able to generalize in

dynamic CI/CD settings.

Reinforcement Learning (RL) for TCP: Reinforcement

Learning (RL) has become an attractive alternative to

supervised learning to TCP especially on Agile and

CI/CD setting where changes in system behavior occur

quickly at any given time of the day and night as

suggested by Su et al. [33]. In contrast to supervised

approaches, RL does not use labeled data; rather, it can

learn prioritization policies through interaction with the

environment and by getting reward signals, such as early

fault detection, less execution time, or better resource

utilization, as explained by Bagherzadeh et al. [34]. Such

a feedback-guided learning allows RL agents to

dynamically transform their decision-making strategies as

the Agile development is very dynamic and constantly

changing in nature as explained by Mirzaei and

Keyvanpour [35].

 Recent experiments show that RL is effective in

the dynamic adaption of prioritization. Indicatively,

Bagherzadeh (2024) found that the rate of fault detection

improved by up to 50% in the CI pipelines, which

underscores the capability of RL to revise its policy

depending on the real-time execution patterns as found by

Yaraghi et al. [36]. Further enhancement such as time-

windowed reward functions enhance further RL

responsiveness to recent changes and fault trend variation

as suggested by Li et al. [37].

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 99

 Despite these advantages, RL has problems with

large-scale test suites. Real-time applicability can be

hampered by exploration costs, low convergence rates,

and the necessity of many iterations to explore the

phenomena and facilitate their future implementation and

application in real-time scenarios as explained by Han et

al. [38]. Incorporating RL into CI/CD pipelines can also

be engineered with lots of attention without adding delays

or computational overhead that could cause a disruption

of quick build cycles as explained by Pandhare et al. [39].

These drawbacks have led to the desire hybrid methods

that combine RL with techniques like clustering to

improve scalability.

Test Case Prioritization Clustering Techniques: TCP

extensively uses clustering methods especially the

unsupervised learning methods to maintain large and

diversified test repositories. Such algorithms as the

DBSCAN and K-Means cluster test cases based on their

features (e.g., execution time, failure rate, and similarity

of the code) and limit the decision space, allowing more

efficient prioritization processes to be carried out, a

feature of algorithms that are not new but has only

recently been embraced in research as outlined by Vescan

et al. [40].

 DBSCAN, specifically, works well with test data

since it can find clusters and outliers without specifying

the number of clusters involved and irregular data

distribution can also be dealt with.

 Hybrid types of clustering have been examined

with the aim of optimizing the performance of TCP.

Indicatively, Zhang and Chen (2023) integrated

DBSCAN with Firefly Optimization to rank tests within

clusters, and showed better APFD results with the help of

reinforcers as explained by Bagherzadeh et al. [34].

Nevertheless, these approaches are mostly stagnant and

cannot keep up with the constant changes prevalent in

Agile setting as explained by Wang and Zhang [41]. To

address this issue, Cluster-based Adaptive Prioritization

(CAP) strategies dynamically update cluster boundaries

and test priorities according to the latest test results and

code changes as explained by Vishwanath Karad et al.

[42]. Nevertheless, the majority of clustering-based TCP

models do not include the learning mechanisms such as

RL and can therefore not fine-tune their decisions using

feedback as it appears as described by Pan et al. [23].

 Although clustering is useful in sorting large test

suites and in reducing redundancy, the fact that it is a

static concept restricts its adaptability to rapid Agile

workflows as noted by Gupta and Mahapatra [43]. Real-

time decision-making can not be done in pure clustering

methods which cannot dynamically respond to changing

fault patterns in real-time. All these limitations have

given rise to an increased desire to use hybrid methods

and introduce clustering with adaptive learning methods

to provide stability and responsiveness in the

prioritization process together with stability and

responsiveness in the prioritization process as outlined by

Ahmad et al. [44].

Hybrid Approaches: Combining Strengths: Clusters

increased with reinforcement learning (RL) have been

popular in TCP study, especially in Agile frameworks

where scalability and flexibility must be ensured by

Singh et al. [45]. Clustering can be used to manage the

large test suites by grouping like test cases and RL can be

used to make adaptive decisions using real-time feedback

and long-term performance objectives as per Vescan et al.

[40].

 A popular design is a hierarchical two stage

process where clustering is followed by prioritization

space reduction and a RL agent is used to decide the

sequence to be followed in each cluster. As an example,

Berisha (2024) and Prado Lima et al. [46] applied

clustering to create homogeneous groups of test cases and

further prioritized them using RL, which was applied

intra-cluster. This architecture decreases the

computational load and enables the prioritization policy

to adapt using the measured fault detection and execution

time measurements in sight of the data acquired during

execution and monitoring of faults as described by

Vescan et al. [47]. Such hybrid models have been

reported to lead to better fault detection and CI/CD

performance, based on empirical research, and have

demonstrated higher efficiency in these fields of study as

described by Chen et al. [48].

 Based on this paradigm, the hybrid model

adopted in the present paper applies DBSCAN to find

natural clusters of test cases based on such features of

code churn, historical defects, and runtime data as code

churn, historical defects, and runtime data. In comparison

to K-Means, DBSCAN does not demand specification of

the number of clusters and is more efficient at noise and

outliers-common to Agile test data as explained by Tiutin

and Vescan [30]. Once clustering is completed, a Q-

learning agent ranks test cases in a cluster by a rewarding

function that is consistent with the Agile objectives: the

prompt detection of faults, less time to execute, and

adjustment to changing defect behavior. This

combination offers the benefit of scaling with clustering,

noise tolerance via DBSCAN, and adaptability with

continuous learning through RL. The approach is

appropriate to be applied to Agile workflows where

quick, adaptable, and contextual TCP is required due to

the localized decision-making process and the availability

of real-time feedback as outlined Li et al. [49].

Tools, Datasets, and Benchmarks: Benchmarking TCP

techniques has been performed on a number of datasets

and tools, with the most common ones being Defects4J,

LRTS, and Apache test suites described by Zhang et al.

[50]. The drawbacks of Defects4J are especially common

because it has repeatable faults and detailed execution

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 100

logs as explained by Han et al. [38]. Nevertheless, its

comparatively rigid structure does not make it applicable

to Agile environments, where codebases and test behavior

change at a high pace. More general discussions of TCP-

based methodologies point to the fact that most currently

available data do not cover Agile dynamics sufficiently

well described by Khatibsyarbini et al. [29].

 Some researcher model development pipelines

based on synthetic data or mine execution traces of CI

systems like Jenkins to better model real-world behavior

in development pipelines, which are executed in practice

as proposed by Vescan et al. [51]. These sources have

more realistic presentations of the variating test results,

code fluctuations, and noisy logs that reflect closely well

the actual Agile workflows.

 A similar weakness relates to evaluation

measures. The majority of TCP research is based on

APFD or NAPFD, which does not adequately capture

Agile principles, including time and scalability and real-

time responsiveness as projected by Rosenbauer et al.

[32]. Recent research suggests the development of more

rigorous evaluation criteria, including capture of

reduction in execution time, responsiveness, robustness in

the presence of dynamic conditions as stated by Li et al.

[49]. This wider range of metrics is proposed in the given

model that tries to offer a more realistic and Agile-

friendly measure of TCP performance as reported by

Yaraghi et al. [52].

Research Gaps and Motivation: Although there has

been progress in the domain of ML and RL-driven TCP,

there are a number of gaps to be filled when

implementing these techniques in Agile settings.

Scalability still remains a significant issue with RL

models usually needing a lot of training and potentially

not converging fast enough to allow quick development

cycles to occur on a model with a high level of scalability

at the same time as describes by Yaraghi et al. [52].

Another urgent concern is data quality: numerous models

expect clean, labeled data, but in Agile pipelines, test

results are often noisy, incomplete, or inconsistent in

most cases as described by Cheng et al. [53].

 Many of the current approaches are also

restricted in terms of adaptability. The traditional or

semistatic models in most cases do not modify the

prioritization techniques based on the changing defect

patterns, changing codebases or changing patterns of

execution in most circumstances, such as test executions,

code-written patterns, and so forth as described by Iqbal

and Al-Azzoni [54]. Moreover, real-world integration

with CI/CD pipelines is often not considered; only

several models can be used with lightweight and low-

overhead deployment that is critical in automated

processes when feedback and low latency are the key

factors to consider as described by Geetha et al. [55].

This requirement was also highlighted by Tasneem [56].

Such gaps drive the necessity to have hybrid, adaptive,

and noise-tolerant TCP solutions that can be successfully

used in current Agile and CI/CD environments.

Proposed Methodology: The proposed hybrid model is a

variant of DBSCAN clustering that is integrated with the

Q-learning reinforcement learning addressing the issues

of Agile regression testing, such as noisy data, flaky tests,

and fast-changing codebases. The pipeline is based on six

stages: Data Collection, Preprocessing, Feature Selection,

Machine Learning (DBSCAN + Q-Learning), Model

Evaluation and Deployment (Figure 6). This workflow

guarantees the scalability and flexibility as well as the

openness to CI/CD platforms, including Jenkins, Azure

Devops, Docker, and Selenium.

 After data collection and preprocessing, such as

removing duplicates, normalizing and treating flaky tests,

are completed, then the relevant features to include in the

model training are chosen. DBSCAN clusters group test

cases based on structural and behavioral similarities,

considering factors like past failures, code changes, and

execution patterns. Its density-based methodology

removes noise and finds clusters without specifying the

number of groups, and thus is appropriate to

heterogeneous Agile data.

 In each cluster, Q-learning was used to establish

the best execution sequence by maximizing fault

detection (quantified through APFD) and minimizing the

cost of execution. DBSCAN with Q-learning allows its

application in reducing noise, adaptive prioritization, and

effective early fault detection on time.

 Finally, the system is implemented within

CI/CD pipelines, where it constantly updates clusters and

recalculates prioritization policies using real-time

feedback. This guaranties continued flexibility in

modification of Agile development and enhances

accuracy, APFD, and total efficiency in regression

testing.

Overview of the Hybrid Model: The entire operational

workflow of the proposed method is shown in figure 2. It

begins by gathering heterogeneous Agile test data, and

then preprocessing (normalization, deduplication, flaky-

test detection). The features that are selected are sent to

DBSCAN to remove noise and cluster, and the Q-

learning algorithm is used to rank the tests within a

cluster. The model is updated by a feedback loop that

reacts on evaluation metrics (APFD, NAPFD, accuracy,

and execution time), making it possible to constantly

adapt it.

Dataset Collection: Open-source software repositories

and industrial Agile CI/CD environments, such as

Defects4J, Apache Commons, DeepOrder GitHub CI

logs, and simulated Agile pipelines were used to gather

data. The combined data set has about 15,000 test runs

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 101

with commit data, historical failure data, run time, code churn data, levels of defect severity, and test logs.

Table 1: Comparative Analysis of Recent Studies on Predictive Analytics for TCP in Agile Software Development.

Author Dataset
Predictive Analytics ML/AI Method Focus on

TCP Agile/CI Adaptability Scalability

Yoo et al. [1] Literature survey Yes No Yes No No

Zhang et al. [2] Open-source logs (DBSCAN) No Yes Yes No No

Sami et al. [3] OSS test suites No Yes Yes Yes No

Ajorloo et al. [5] Agile project data Yes Yes No Yes No

Cheng et al. [7] Long-running industrial test suites Yes Yes Yes Yes No

Arshad et al.[8] Industrial defect data Yes Yes No Yes No

Tawosi et al. [10] Survey data Yes No No Yes No

Rajasingh et al. [15] OSS fault detection datasets No Yes Yes No No

Chen et al. [16] Historical execution info No Yes Yes No No

Felding et al. [20] Synthetic datasets No Yes Yes Yes Yes

Pan et al. [23] CI log data No Yes Yes No No

Bugayenko et al. [27] OSS task datasets Yes Yes No Yes No

Bajaj et al. [28] Synthetic test cases No Yes Yes No No

Felding et al. [26] OSS test data No Yes Yes Yes No

Khatibsyarbini et al. Literature re-[29] view Yes Yes Yes No No

Bagherzadeh et al. [34] Historical logs No Yes Yes Yes No

Gupta et al. [43] Unit + integration tests No Yes Yes No No

Bagherzadeh et al. [52] Open-source test suites No Yes Yes No No

Vescan et al. [40] Multiobjective test suites No Yes Yes Yes No

Prado Lima et al. [46] Configurable CI data Yes Yes Yes Yes No

Z. Zhang et al. [53] Open-source test logs No Yes Yes No No

Han et al. [38] Reinforcement learning test data Yes Yes Yes Yes No

Vescan et al. [51] Regression test suites No Yes Yes No No

Li et al. [49] Semanticaware CI data No Yes Yes Yes Yes

Cheng et al. [53] Large OSS config test sets No Yes Yes No Yes

Qingran et al. [33] CI execution logs from open-source systems No Yes Yes Yes Yes

Yaraghi et al. [36] TARBENCH: 45K tests, 59 projects No Yes No No No

Tasneem et al. [56] 76 studies from 5 databases Yes Yes No Yes No

Pandhare et al. [39] Synthetic CI tests (Mabl, Launchable) Yes Yes No Yes No

Figure 2: Methodology of Proposed Hybrid Model for Test Case Prioritization.

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 102

 This mixed data set is also indicative of the

diversity and heterogeneity of actual Agile processes and

ensures that the hybrid model is trained and tested under

real and heterogeneous testing conditions. Table 2

presents a detailed account of all the data sources and the

attributes that were recorded.

Table 2: Summary of Datasets and Tools Used

Source Repository/Tool Test Cases Data Collected

DeepOrder GitHub Java CI Projects 5,000 Historical CI logs, commit history,

and test failures

Defects4J

 Benchmark

Defects4J v2.0 Approx. 3,500 Test cases, real-world bugs, and

patch history

Apache Commons Apache Commons Lang,

Math

Approx. 3,000 Bug report, Code revisions and test

coverage

Proposed Hybrid

Model

Simulated Agile CI

Projects

Approx. 2,000 Regression testing, bug-fix data,

and code changes

Preprocessing: Agile CI/CD pipelines are known to

produce a lot of noisy, inconsistent and incomplete test

data because of quick code change, unstable test

environment, and parallel execution. Hence, a strict

preprocess step was implemented in order to deliver high

quality input to both the DBSCAN clustering as well as

the Q-learning reinforcement model.

 To eliminate redundant data, first, duplicate

records (2.4%) were eliminated to avoid an influence of

duplicate information on cluster density estimation. The

missing values (5.7%), which are typically present in

execution time logs and test results, were imputed using

mean imputation in the case of numerical attributes and

mode imputation in the case of categorical attributes.

Also, 3.1 percent of flaky tests-detected by inconsistent

pass/fail behavior under the same execution conditions

were eliminated to improve data stability and avoid

misleading reward signals during training

 In order to equalize the heterogeneous numeric

features, Min-Max Normalization was used to normalize

all the numerical variables within a range [0,1]. This

action stabilizes the distance based clustering of

DBSCAN and speeds up the convergence of Q-learning

because huge features are not allowed to dominate. The

normalization can be defined as:

XScaled

Where X represents the original value of the feature, Xmin

and Xmax is the minimum and maximum value of the

feature observed.

Categorical variables (such as defect severity, type of the

test, etc) were coded with the one-hot encoding to avoid

ordinal bias and be compatible with both the clustering

and the reinforcement learning state representations. The

complete preprocessing was performed with the help of

Pandas, NumPy, and Scikit-learn, so that it can be easily

integrated with the reinforcement learning component of

TensorFlow.

Feature Selection: In order to match the dynamic needs

of Agile, we have determined the most influential

features in three areas code changes (e.g., churn, commit

frequency), defect history (e.g., severity, recurrence), and

execution data (e.g., test runtime, recent failures).

Pearson’s Correlation Coefficient was used to assess

linear relationships, while Recursive Feature Elimination

(RFE) iteratively removes low-effect features. Both

techniques were implemented using Scikit-learn. The top

10 features were retained to maintain balance across

domains and increase the predictive accuracy of the

model.

Model Selection: The Machine Learning module

integrates DBSCAN clustering with Q-Learning

reinforcement learning to form an adaptive two-phase

prioritization strategy. DBSCAN first organizes test cases

into coherent structural groups, after which Q-Learning

optimizes the execution order within each cluster.

Algorithm 1 summarizes the complete hybrid workflow,

showing how clustering and reinforcement learning

interact to produce the final prioritized test suite.

DBSCAN Clustering: The first component of the

machine learning module applies DBSCAN to identify

groups of structurally and behaviorally similar test cases

based on density characteristics. This step corresponds to

the unsupervised ML component illustrated in Figure 2.

DBSCAN is well suited for Agile regression testing

because it does not require a predefined number of

clusters and is inherently robust to noise an important

advantage when dealing with heterogeneous, rapidly

changing test data as described by Ester et al. [57].

Unlike K-Means, DBSCAN does not depend on spherical

cluster assumptions or a predefined number of clusters,

making it more suitable for irregular and evolving Agile

test datasets. There were two important hyper parameters

that were tuned through grid search:

 ε ∈ [0.3,0.7], MinPts ∈ [3,7]

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 103

Here, ε is the radius of the neighborhood that is used to

define the density connectivity and MinPts is the

minimum number of points that are needed to create a

dense region. The evaluation of the quality of clustering

was done with a Silhouette Score based measure that

evaluated the intracluster cohesion and the separation

between clusters. There were higher silhouette values,

which validated that the selected hyperparameters

produced and well structured clusters that can be used to

develop downstream reinforcement learning. DBSCAN

was provided on Scikit-learn, and Q-learning was

provided on TensorFlow.

Q-Learning Based Test Case Prioritization: After the

formation of clusters, Q-Learning is used in a cluster to

obtain an ideal order of execution of the test cases

contained in the cluster. This design is based on the

reinforcement-learning TCP approach that Spieker et al.

studied in continuous integration environment [58]. Q-

Learning is a cluster-level algorithm that minimizes the

computational costs and still provides fault-detection

capability.

The reward function used by the RL agent to evaluate

each action (i.e. which test case to execute next) is as

follows the early fault detection and cost of execution are

balanced:

R = w1 · APFD − w2 · Time

Where w1 = 0.7 is used to maximise the Average

Percentage of Faults Detected (APFD) and w2 = 0.3 is

used to discourage longer test execution times. This

incentive system encourages the process of focusing on

high-impact and low-cost tests, which are closely

associated with the Agile hardship demands.

The Q-values are solved through recurrence of the

Bellman optimality equation suggested by Watkins and

Dayan [59]:

where α = 0.1 is the learning rate and γ = 0.9 is the

discount factor. The learning rate determines the speed at

which new experience impacts the policy of the agent,

whereas the discount factor ensures that the agent is not

greedy but optimizes over long-term goals.

This setup was directly equivalent to the Reinforcement

Learning (RL) block implemented in Figure 2, in which

the combination of DBSCAN-generated clusters, the

APFD time reward model, and the α = 0.1,γ = 0.9

learning rate allows the generation of adaptive, data-

driven prioritization of test cases that would be suitable in

dynamic Agile CI/CD contexts.

Algorithmic Workflow: The full hybrid Test Case

Prioritization (TCP) algorithm presented in algorithm 1

combines the results of DBSCAN clustering along with

the adaptive Q-Learning decision-making. Each cluster is

processed independently, allowing the model to scale

effectively to large Agile test suites while maintaining

local adaptability and noise robustness.

Algorithm 1: Hybrid Clustering and Q-Learning Based

Test Case Prioritization

Input: Clusters C1,C2,...,Cn

Output: Final prioritized test suite

Initialize: α = 0.1, γ = 0.9, w1 = 0.7, w2 = 0.3, episodes =

100, ϵ = 0.1;

Define:;

State s: current test case and its features;

Action a: select next test case;

Terminal state: all test cases executed or testing budget

exhausted;

Baseline Methods: To analyze the effectiveness of the

suggested hybrid model (DBSCAN + Q-learning)

comparing with four widely adopted baselines that

represent heuristic, metaheuristic, and machine learning

families.

foreach cluster C i do
Initialize Q (s,a) ← ; 0
for episode ← 1 to N do

Initializestate s ;
while notterminal do

Chooseaction a using ϵ - greedypolicy;
Executetestcase,measure APFD and Time ;
Computereward: R = w 1 × APFD − w 2 × Time ;
Update Q (s,a usingtheBellmanequation;)
Set s ← s ′ ;

Ranktestcasesby Q - values;

Mergeprioritizedlistsfromallclusters;
return finalprioritizedtestsuite;

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 104

Random Prioritization: A lower-bound baseline that

executes test cases in random order. It is included in

almost all TCP studies as a minimal reference for early

fault detection performance [80], [81]. Its weakness lies

in a complete lack of learning or adaptation, resulting in

poor fault detection.

Greedy Additional (Additional Coverage): A classical

heuristic that iteratively selects the test case providing the

maximum additional coverage or fault detection with

respect to already executed tests [81]. It is efficient and

historically forms the benchmark in regression testing.

However, it is fixed and fails to keep up with changing

Agile pipelines.

Deep Learning-Based TCP (DeepOrder): A strategy

based on learning using historical CI logs to learn neural

models to predict the best test sequences. It embodies the

current state of the art in ML-based TCP, however, it

demands very big training datasets and great computation

capabilities which limits the scalability when the resource

is scarce.

Proposed Hybrid Model (DBSCAN + Q-learning): In

the first stage of our method, we cluster test cases

together with the help of DBSCAN and use the Q-

learning method in each cluster to select the tests

adaptively. The reward function balances the early fault

detection (APFD) and the execution time. In comparison

with baselines, this hybrid model is scalable, noise

resistant and adaptable to Agile CI/CD pipelines.

Table 3: Baseline Comparison Matrix

Method Type Strengths Limitations

Random Heuristic

(baseline)

Simple; provides a lower bound Very poor detection rate; no

adaptation

Greedy Additional Heuristic Widely used; efficient for small

test suites

Static; not adaptive to Agile

dynamics

GA-TCP Metaheuristic Finds optimized prioritization

sequences

Computationally expensive; slow

for CI/CD

DeepOrder (2021) Deep Learning Learns from CI logs; strong

empirical performance

Requires large datasets; resource

heavy

Proposed Hybrid

(DBSCAN + Q-

learning)

Hybrid ML + RL Adaptive, scalable, robust to

noisy Agile data

More complex implementation;

requires retraining

Model Testing: To rigorously evaluate the performance

of the proposed hybrid model, the dataset was divided

into a training set (80%) and a testing set (20%). A 5-fold

cross-validation strategy was employed to reduce the risk

of overfitting and to ensure that the learned prioritization

policy generalizes effectively across varying Agile

project conditions. Each experiment was run 30 times

with various random seeds, which admits stochastic

variations to average due to clustering density threshold

and exploration of reinforcement learning. The standard

deviation and the mean are used to report the results

obtained after running.

The paired t-tests at 95 percentage confidence level of p

< 0.05 were performed to determine whether the

proposed approach improved statistically significant

improvements over the baseline techniques. This

statistical testing will make sure that the apparent

improvements are not because of randomness but rather

that there are improvements in performance.

 The model was tested on the basis of four

popular indicators in Test Case Prioritization (TCP)

studies, Accuracy, APFD, NAPFD, and Testing Time

Reduction. These measures are correctness, the ability to

detect faults, the ability to operate under restriction, and

computational savings, respectively.

Accuracy: Accuracy is a measure of the percentage of

ordered test cases that are correct as compared to an ideal

prioritization. It measure the consistency of the learned

policy to meaningful sequences of execution:

Number of Correctly Prioritized Test Cases

Accuracy = ---×

100.

Total Test Cases

 The accuracy is due to the fact that TCP not only

attempts to identify faults at an early stage but also to

generate logically consistent, stable rankings over the

iterations.

Average Percentage of Faults Detected (APFD): APFD

is used to measure the rate at which faults are discovered

when running the tests. It is a conventional benchmark

measure proposed by Rothermel et al. [60] and still one

of the most powerful TCP measures. APFD values are

higher, which means faster fault detection:

,

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 105

Where TFi is the index of the initial test case which

identifies fault i, n is the overall count of test cases, and m

is the overall count of faults. This indicator is necessary

since early detection leads to direct saving of debugging

time and avoidance of the spread of faults during Agile

CI/CD cycles.

Normalized APFD (NAPFD): NAPFD builds upon

APFD to support the situation of partial execution of

budgets or detecting partial fault. This is especially

appropriate to Agile pipelines whereby full test can be

curtailed because of time boxed sprints often restrict full

test suite execution. It is computed as:

.

The normalization also guarantees the comparability of

the results across datasets, fault densities and time

constraints, which is a drawback of raw APFD in

restricted environment.

Testing Time Reduction: To evaluate computational

efficiency is measured by how much the total execution

time is reduced when comparing it to the techniques used

as a baseline:

Tbaseline − Tproposed

Time Reduction =------------------------------× 100,

Tbaseline

Where Tbaseline represents the runtime of a conventional

approach (random or greedy ordering) and Tproposed is the

runtime using the hybrid model. This metric is critical for

Agile workflows, where regression testing constitutes a

major portion of sprint time, and reductions directly

translate to faster delivery cycles.

Statistical Significance Testing: In order to test the

reliability of performance improvements, paired t-test

was used:

,

where d is the mean difference across paired

observations, Sd is the standard deviation of differences,

and n is the number of experimental repetitions. Using

paired tests ensures fair comparisons because each

technique is evaluated on identical data partitions and

random seeds.

Research Setup: These experiments were conducted on

Windows 10, Intel Core i7, 16 GB RAM and NVIDIA

GTX 1080. The system is built on Python 3.9,

TensorFlow 2.10, relating to reinforcement learning,

Scikitlearn 1.2, concerning clustering methods, and

Selenium 4.8 to run automated tests by using remote web

driver. Version control was done using GitHub and results

were visualized using Matplotlib. The dataset contained

10,000 Agile test cases (through Jira and Azure DevOps)

and 5,000 test cases of the Defects4J benchmark. The

variety of the sources enabled practical, representative

assessment of the hybrid model in Agile conditions.

RESULT

 To assess the efficiency of the proposed hybrid

model, three benchmark techniques, Random Selection,

Greedy (Additional Coverage), and DeepOrder (a Deep

Learning-Based TCP), were compared. The performance

was assessed using four key metrics: Accuracy, APFD

(Average Percentage of Faults Detected), NAPFD

(Normalized APFD), and Testing Time Reduction. Table

6.1 provide the numerical results summary.

Table 4: Performance Comparison of TCP Techniques

Technique Accuracy (%) APFD NAPFD Testing Time Reduction

Random Selection 52.0 0.48 0.62 5%

Greedy Algorithm 68.0 0.65 0.71 12%

DeepOrder 81.0 0.78 0.84 18%

Proposed Hybrid Model 90.5 0.87 0.905 28%

 The hybrid model had the highest APFD (0.87),

which means that this model can identify early fault

detection. Its NAPFD of 0.905 demonstrates good short-

term progress in priorities. It has a high degree of

prediction accuracy of 90.5%, which indicates many

indications of reliability in the calculation of optimal test

performance orders. Most significantly, it was able to

reduce the time of test execution by 28, which was better

than DeepOrder (18 percent), Greedy (12 percent), and

Random (5 percent). These findings were graphically

represented in Figures 3, 4, and 5, which give a

comparative bar chart of all the four metrics and

techniques.

Accuracy and Testing Time Reduction: The

comparative results of Accuracy and Testing Time

Reduction are shown in Figure 3 The hybrid model

proposed has an accuracy of 90.5%, which is a 73.9%

relative improvement over Random Selection, a 32.9%

improvement over Greedy, and an 11.7% improvement

over DeepOrder.

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 106

Figure 3: Working principle of the hybrid model for test case prioritization.

 In terms of Time Reduction in the Testing, the

hybrid model scores 28, which is much higher than

DeepOrder (18) by 55.5, Greedy (12) by 133 and

Random (5) by an astonishing 460. This is a clear pointer

that the hybrid approach not only enhances the reliability

of prediction but also makes the execution of the hybrid

approach highly effective in Agile environments.

APFD and NAPFD: Figure 4 show the relative

performance of the four techniques based on APFD and

NAPFD measure. The hybrid model achieved an APFD

of 0.87, which is 81% higher than Random Selection

(0.48), 34% better than Greedy (0.65), and 11.5%

superior to DeepOrder (0.78).

Figure 4: Comparative performance of TCP techniques in APFD and NAPFD

 Similarly, in the case of NAPFD, the hybrid

model records 0.905, outperforming Random Selection

(0.62) by 46%, Greedy (0.71) by 27.4%, and DeepOrder

(0.84) by 7.7%. These results prove that the hybrid

method ensures earlier and more reliable in fault

detection, which is a significant aspect of reducing

debugging costs in Continuous Integration/Continuous

Deployment (CI/CD) pipelines.

Overall Comparison of TCP Techniques: The overall

visual comparison indicates clearly that the proposed

hybrid model is always better than all baselines in terms

of accuracy, fault detection effectiveness, and reduction

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 107

of testing time. One-way ANOVA of all four techniques

and metrics produced p < 0.001, which proved that there

are significant differences in general. Additional post-hoc

Tukey tests demonstrated that the hybrid model is much

better (p < 0.01) in all pairwise comparisons.

Figure 5: Overall Comparison of TCP Techniques

 Overall, the proposed hybrid model shows

statistically significant improvements in all evaluation

metrics compared to current methods. In terms of

accuracy achieves an improvement of 11.7% over

DeepOrder, 32.9% over Greedy, and 73.9% over Random

selection. The model save testing time, with 55.5%

improvement over DeepOrder, 133% over Greedy, and an

incredible 460% compared to Random. In fault detection

efficiency, the model also has an APFD increase of 11.5%

relative to DeepOrder, 34% relative to Greedy and 81%

relative to Random. Its NAPFD score also shows a great

improvement as it is better than DeepOrder by 7.7,

Greedy by 27.4, and Random by 46. All these results

support the power, efficiency, and adaptability of the

proposed hybrid model in Agile software testing. The

model is a combination of clustering and reinforcement

learning, which is why it is an effective solution to the

issue of noisy data, frequent code changes, and CI/CD

pipeline constraints, and, therefore, a viable and scalable

solution to the problem of test case prioritization in the

real world.

DISCUSSION

 The hybrid model demonstrates that combining

density-based clustering with reinforcement learning

provides a robust solution for agile test case

prioritization. DBSCAN contributed by filtering noise,

identifying structurally coherent groups of test cases, and

capturing behavioral similarities that traditional distance-

based or supervised techniques fail to model. Q-Learning

then built on these clusters to adaptively select test cases

that maximize fault detection while accounting for

execution cost, resulting in a more efficient use of limited

testing budgets in fast-paced CI/CD environments.

 These results comprise a wise observation that

noise-conscious grouping and subsequent adaptive

decision making generate a more robust prioritization

approach compared to both methods individually. This

enables the model to be stable even when it is faced with

flaky tests, incomplete logs and frequent code changes

issues that greatly impair the performance of deep

learning-based system like DeepOrder which heavily

depends on clean and large-scale historical data.

 Although it has its advantages, the strategy has

some drawbacks. DBSCAN is sensitive to the selection

of both ε and MinPt, and the improper choice of these

parameters can result in fragmented or oversized clusters.

Also, Q-Learning can be slow to converge in cases the

test environment is constantly changing, which is typical

of Agile teams that apply rapid iteration. Adequately,

various datasets are also relied on in the model; hence, its

capabilities could be limited during the initial phases of

projects where historical testing data are limited.

 The research deals with significant threats to

validity through rigorous preprocessing, trialing, and

testing of statistical significance. Nevertheless, how much

a person can generalize his results outside the datasets

that were used specifically to non Java projects or

possibly industrial systems with varying architectural

properties is yet to be tested further.

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 108

 Altogether, the hybrid model adds a feasible and

theory-founded model applicable to the reality CI/CD

pipelines. Its adaptability (and noise tolerance) strengths

make it suitable in areas where reliability and quick

feedback is paramount.

Threats to Validity: There are a number of possible

threats to validity of this study. Internal validity might

have been affected by the choice of DBSCAN parameters

(ε ∈ [0.3,0.7], MinPts ∈ [3,7]) and Q-learning hyper

parameters (α = 0.1, γ = 0.9). Although grid search

(Section 24) was used to tune parameters, alternative

settings may create effects. To reduce this, we repeated it

30 times, and we used statistical testing (t = 3.45, p <

0.01) to verify that this is significant.

 The datasets that are applied to external validity

are Defects4J, Apache Commons, and simulated Agile

CI/CD projects (Section 26). Although these are common

benchmarks, they might not be applicable to other areas

like embedded systems, mobile platforms or large-scale

industrial pipelines. We plan to continue validation using

larger datasets in future work.

 Construct validity comes as a result of metrics

used in the evaluation. The quality of fault detection and

prioritization is well-quantified by APFD, NAPFD and

accuracy yet is not comprehensive in terms of the CI/CD-

specific dimensions (developer effort, pipeline latency, or

resource consumption). Other measures will be used in

further research to enhance construct coverage.

 The validity of the conclusion can be influenced

by the distribution of data and the possible sampling bias.

Agile data is able to change rapidly hence model

retraining was also added as a prevention measure.

Regular retraining also keeps the performance consistent

within the dynamic nature of project environment.

Deployment: To enable practical adoption in real Agile

software engineering workflows, the proposed hybrid

model is deployed as a lightweight Python-based

microservice integrated directly into CI/CD pipelines.

The deployment architecture is designed to ensure

automated prioritization of test cases , smooth scalability,

consistency in the environment and low operational

overhead.

 The overall deployment pipeline is shown in

figure 6. The trained model, which is put in a Docker

container, is connected to CI/CD systems, including

Jenkins and Azure DevOps. Depending on each code

commit or pull request, the CI server invokes the

microservice which polls the existing repository states,

source-code modifications, and last run executions. The

preprocessing and clustering phases are carried out

automatically and Q-learning produces a new prioritized

test suite, which is submitted to automation frameworks

like Selenium to execute.

 The system facilitates periodic retraining of the

reinforcement learning agent whether on a periodic basis

(usually monthly) or in case major changes in fault

patterns, code churn, or test suite behavior are observed.

This will make sure that prioritization policies are in line

with the changing Agile development trends. The real-

time feedback and performance auditing is achieved due

to constant tracking of key performance indicators, such

as APFD and cumulative execution time.

 Docker containerization allows the similarity in

deployment across staging, production and development

platforms as well as facilitating portability, microservice

chaining and horizontal scaling, in order to mitigate the

testing workload. The design is in agreement with the

modern DevOps and Agile delivery.

Figure 6: Proposed Hybrid Model Deployment Architecture in CI/CD Environments.

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 109

 A typical Python endpoint that is used to call the DBSCAN-based clustering and Q-learning prioritization

microservice is provided in Listing 1.

Listing 1: Python Endpoint for Q-learning Based Test Prioritization

@app.route(’/prioritize’, methods=[’POST’]) def prioritize_tests():

data = request.get_json() test_features = preprocess(data) clusters =

dbscan.fit_predict(test_features) prioritized_tests = {} for cluster_id in

set(clusters):

cluster_data = test_features[clusters == cluster_id] priorities =

q_learning_rank(cluster_data) prioritized_tests[cluster_id] = priorities

return jsonify(prioritized_tests)

The deployment container is defined using the Docker configuration shown in Listing 2, enabling consistent execution

across heterogeneous environments:

Listing 2: Dockerfile for Deployment Container

FROM python:3.10

WORKDIR /app COPY . /app

RUN pip install -r requirements.txt

CMD ["python", "app.py"]

 The given deployment workflow shows that the

suggested hybrid model is not merely a theoretical

construct but can be deployed into the real-world

industrial pipelines to provide an automated, scalable,

and adaptive way of regression testing within the Agile

CI/CD framework.

Conclusion with Future Direction: This paper presented

a hybrid model combining test case prioritization,

DBSCAN clustering, and Qlearning-based reinforcement

learning to address the challenges facing the Agile

software development process. The suggested model

showed the following important gains, including 90.5%

accuracy, APFD of 0.87, and the minimization of the test

time by 28%. The superiority of the model over

traditional and deep learning based models is due to the

structural arrangement of clustering applications and

adaptive learning features of reinforcement learning, the

model, which is vital in dynamic, CI/CD-based Agile

environments. Future work will improve the model

intelligence by integrating Natural Language Processing

(NLP) for deriving semantic insights from user stories

and linking them to relevant test cases. Also, the use of

online learning methods can be used to reduce model

drift as time goes by, and this guarantees constant

flexibility. The model scalability and generalizability will

be made stronger with further validation in other fields

like the web applications, mobile and embedded systems.

REFERENCES

[1] S. Yoo and M. Harman, “Regression testing

minimization, selection and prioritization: a

survey,” Software testing, verification and

reliability, vol. 22, no. 2, pp. 67–120, 2012.

[2] Z. Zhang, J. Chen, Y. Gu, Z. Li, and R. N. A.

Sosu, “Exploiting dbscan and combination

strategy to prioritize the test suite in regression

testing,” IET Software, vol. 2024, no. 1, p.

9942959, 2024.

[3] M. A. Sami, Z. Rasheed, M. Waseem, Z. Zhang,

T. Herda, and P. Abrahamsson, “Prioritizing

software requirements using large language

models,” arXiv preprint arXiv:2405.01564,

2024.

[4] A. Sharif, D. Marijan, and M. Liaaen,

“Deeporder: Deep learning for test case

prioritization in continuous integration testing,”

in 2021 IEEE International conference on

software maintenance and evolution (ICSME).

IEEE, 2021, pp. 525–534.

[5] S. Ajorloo, A. Jamarani, M. Kashfi, M. H.

Kashani, and A. Najafizadeh, “A systematic

review of machine learning methods in software

testing,” Applied Soft Computing, vol. 162, p.

111805, 2024.

[6] M. F. I. Khan and A. K. M. Masum, “Predictive

analytics and machine learning for real-time

detection of software defects and agile test

management,” Educational Administration:

Theory and Practice, vol. 30, no. 4, pp. 1051–

1057, 2024.

[7] R. Cheng, S. Wang, R. Jabbarvand, and D.

Marinov, “Revisiting test-case prioritization on

longrunning test suites,” in Proceedings of the

33rd ACM SIGSOFT International Symposium

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 110

on Software Testing and Analysis, 2024, pp.

615–627.

[8] H. Arshad, S. Shaheen, J. A. Khan, M. S. Anwar,

K. Aurangzeb, and M. Alhussein, “A novel

hybrid requirement’s prioritization approach

based on critical software project factors,”

Cognition, Technology & Work, vol. 25, no. 2,

pp. 305–324, 2023.

[9] R. Mamata, A. Azim, R. Liscano, K. Smith, Y.-

K. Chang, G. Seferi, and Q. Tauseef, “Test case

prioritization using transfer learning in

continuous integration environments,” in 2023

IEEE/ACM International Conference on

Automation of Software Test (AST). IEEE, 2023,

pp. 191–200.

[10] V. Tawosi, R. Moussa, and F. Sarro, “Agile

effort estimation: Have we solved the problem

yet?

insights from a replication study,” IEEE Transactions on

Software Engineering, vol. 49, no. 4, pp. 2677–

2697, 2022.

[11] S. Elbaum, A. G. Malishevsky, and G.

Rothermel, “Test case prioritization: A family of

empirical studies,” IEEE transactions on

software engineering, vol. 28, no. 2, pp. 159–

182, 2002.

[12] E. Rodr´ıguez S´anchez, E. F. V´azquez

Santacruz, and H. Cervantes Maceda, “Effort

and cost estimation using decision tree

techniques and story points in agile software

development,” Mathematics, vol. 11, no. 6, p.

1477, 2023.

[13] M. A. Siddique, W. M. Wan-Kadir, J. Ahmad,

and N. Ibrahim, “Hybrid framework to exclude

similar and faulty test cases in regression

testing,” Baghdad Science Journal, vol. 21, no.

2 (SI), pp. 0802–0802, 2024.

[14] C. Birchler, S. Khatiri, P. Derakhshanfar, S.

Panichella, and A. Panichella, “Single and

multiobjective test cases prioritization for self-

driving cars in virtual environments,” ACM

Transactions on Software Engineering and

Methodology, vol. 32, no. 2, pp. 1–30, 2023.

[15] J. P. Rajasingh, P. S. Kumar, and S. Srinivasan,

“Efficient fault detection by test case

prioritization via test case selection,” Journal of

Electronic Testing, vol. 39, no. 5, pp. 659–677,

2023.

[16] R. Chen, Z. Xiao, L. Xiao, and Z. Li,

“Regression testing prioritization technique

based on historical execution information,” in

2022 International Conference on Machine

Learning, Cloud Computing and Intelligent

Mining (MLCCIM). IEEE, 2022, pp. 276–281.

[17] Q. Zhang, C. Fang, W. Sun, S. Yu, Y. Xu, and Y.

Liu, “Test case prioritization using partial

attention,” Journal of Systems and Software, vol.

192, p. 111419, 2022.

[18] S. Omri and C. Sinz, “Learning to rank for test

case prioritization,” in Proceedings of the 15th

workshop on search-based software testing,

2022, pp. 16–24.

[19] Z. Chen, J. Chen, W. Wang, J. Zhou, M. Wang,

X. Chen, S. Zhou, and J. Wang, “Exploring

better black-box test case prioritization via log

analysis,” ACM Transactions on Software

Engineering and Methodology, vol. 32, no. 3,

pp. 1–32, 2023.

[20] E. Felding, “Mathematical optimization for the

test case prioritization problem,” 2022.

[21] S. Singhal, N. Jatana, B. Suri, S. Misra, and L.

Fernandez-Sanz, “Systematic literature review

on test case selection and prioritization: A

tertiary study,” Applied Sciences, vol. 11, no. 24,

p. 12121, 2021.

[22] M. Mahdieh, S.-H. Mirian-Hosseinabadi, and M.

Mahdieh, “Test case prioritization using test case

diversification and fault-proneness estimations,”

Automated Software Engineering, vol. 29, no. 2,

p. 50, 2022.

[23] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L.

Briand, “Test case selection and prioritization

using machine learning: a systematic literature

review,” Empirical Software Engineering, vol.

27, no. 2, p. 29, 2022.

[24] F. Li, J. Zhou, Y. Li, D. Hao, and L. Zhang,

“Aga: An accelerated greedy additional

algorithm for test case prioritization,” IEEE

Transactions on Software Engineering, vol. 48,

no. 12, pp. 5102–5119, 2021.

[25] P. K. Gupta, “K-step crossover method based on

genetic algorithm for test suite prioritization in

regression testing.” J. Univers. Comput. Sci.,

vol. 27, no. 2, pp. 170–189, 2021.

[26] E. Felding, P. E. Strandberg, N.-H. Quttineh, and

W. Afzal, “Resource constrained test case

prioritization with simulated annealing in an

industrial context,” in Proceedings of the 39th

ACM/SIGAPP Symposium on Applied

Computing, 2024, pp. 1694–1701.

[27] Y. Bugayenko, M. Farina, A. Kruglov, W.

Pedrycz, Y. Plaksin, and G. Succi,

“Automatically prioritizing tasks in software

development,” Ieee Access, vol. 11, pp. 90322–

90334, 2023.

[28] A. Bajaj and O. P. Sangwan, “Discrete cuckoo

search algorithms for test case prioritization,”

Applied Soft Computing, vol. 110, p. 107584,

2021.

[29] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, M.

L. M. Shafie, W. M. N. Wan-Kadir, H. N. A.

Hamed, and M. D. M. Suffian, “Trend

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 111

application of machine learning in test case

prioritization: A review on techniques,” IEEE

Access, vol. 9, pp. 166262–166282, 2021.

[30] C.-M. Tiutin and A. Vescan, “Test case

prioritization based on neural networks

classification,” in Proceedings of the 2nd ACM

International Workshop on AI and Software

Testing/Analysis, 2022, pp. 9–16.

[31] N. Gokilavani and B. Bharathi, “Test case

prioritization to examine software for fault

detection using pca extraction and k-means

clustering with ranking.” Soft Computing-A

Fusion of Foundations, Methodologies &

Applications, vol. 25, no. 7, 2021.

[32] L. Rosenbauer, D. P¨atzel, A. Stein, and J.

H¨ahner, “A learning classifier system for

automated test case prioritization and selection,”

SN Computer Science, vol. 3, no. 5, p. 373,

2022.

[33] Q. Su, X. Li, Y. Ren, R. Qiu, C. Hu, and Y. Yin,

“Attention transfer reinforcement learning for

test case prioritization in continuous

integration,” Applied Sciences, vol. 15, no. 4, p.

2243, 2025.

[34] M. Bagherzadeh, N. Kahani, and L. Briand,

“Reinforcement learning for test case

prioritization,” IEEE Transactions on Software

Engineering, vol. 48, no. 8, pp. 2836–2856,

2021.

[35] H. Mirzaei and M. R. Keyvanpour,

“Reinforcement learning reward function for test

case prioritization in continuous integration,” in

2022 9th Iranian Joint Congress on Fuzzy and

Intelligent Systems (CFIS). IEEE, 2022, pp. 1–6.

[36] A. S. Yaraghi, D. Holden, N. Kahani, and L.

Briand, “Automated test case repair using

language models,” IEEE Transactions on

Software Engineering, 2025.

[37] G. Li, Y. Yang, Z. Wu, T. Cao, Y. Liu, and Z. Li,

“Weighted reward for reinforcement learning

based test case prioritization in continuous

integration testing,” in 2021 IEEE 45th Annual

Computers, Software, and Applications

Conference (COMPSAC). IEEE, 2021, pp. 980–

985.

[38] Y. Han, G. Chen, and B. Han, “An improved

method for test case prioritization in continuous

integration based on reinforcement learning,” in

3rd International Conference on Management

Science and Software Engineering (ICMSSE

2023). Atlantis Press, 2023, pp. 958–972.

[39] H. V. Pandhare, “Future of software test

automation using ai/ml,” International Journal

Of Engineering And Computer Science, vol. 13,

no. 05, 2025.

[40] A. Vescan, R. D. Gaceanu, and A. Szederjesi-

Dragomir, “Embracing unification: A

comprehensive approach to modern test case

prioritization.” in ENASE, 2024, pp. 396–405.

[41] X. Wang and S. Zhang, “Cluster-based adaptive

test case prioritization,” Information and

Software Technology, vol. 165, p. 107339, 2024.

[42] R. Shankar and D. Sridhar, “A comprehensive

review on test case prioritization in continuous

integration platforms,” Int. J. Innov. Sci. Res.

Technol., vol. 8, no. 4, pp. 3223–3229, 2023.

[43] A. Gupta and R. P. Mahapatra, “Test case

prioritization in unit and integration testing: A

shuffled-frog-leaping approach.” Computers,

Materials & Continua, vol. 74, no. 3, 2023.

[44] A. Ahmad, F. G. de Oliveira Neto, E. P. Enoiu,

K. Sandahl, and O. Leifler, “The comparative

evaluation of test prioritization approaches in an

industrial study,” in 2023 IEEE 23rd

International Conference on Software Quality,

Reliability, and Security Companion (QRS-C).

IEEE, 2023, pp. 35–44.

[45] M. Singh, N. Chauhan, and R. Popli, “Test case

reduction and swoa optimization for distributed

agile software development using regression

testing,” Multimedia Tools and Applications,

vol. 84, no. 10, pp. 7065–7090, 2025.

[46] J. A. Prado Lima, W. D. Mendon¸ca, S. R.

Vergilio, and W. K. Assunc¸˜ao, “Cost-effective

learningbased strategies for test case

prioritization in continuous integration of

highly-configurable software,” Empirical

Software Engineering, vol. 27, no. 6, p. 133,

2022.

[47] A. Vescan, R. G˘aceanu, and A. Szederjesi-

Dragomir, “Neural network-based test case

prioritization in continuous integration,” in 2023

38th IEEE/ACM International Conference on

Automated Software Engineering Workshops

(ASEW). IEEE, 2023, pp. 68–77.

[48] J. Chen, Y. Gu, S. Cai, H. Chen, and J. Chen,

“Ks-tcp: an efficient test case prioritization

approach based on k-medoids and similarity,” in

2021 IEEE International Symposium on

Software Reliability Engineering Workshops

(ISSREW). IEEE, 2021, pp. 105–110.

[49] Y. Li, Z. Wang, J. Wang, J. Chen, R. Mou, and

G. Li, “Semantic-aware two-phase test case

prioritization for continuous integration,”

Software Testing, Verification and Reliability,

vol. 34, no. 1, p. e1864, 2024.

[50] L. Zhang, B. Cui, and Z. Zhang, “Optimizing

continuous integration by dynamic test

proportion selection,” in 2023 IEEE

International Conference on Software Analysis,

Pakistan Journal of Scientific Research (Vol. 5 No. 2 December, 2025)

 112

Evolution and Reengineering (SANER). IEEE,

2023, pp. 438–449.

[51] A. Vescan, C. Chisalita-Cretu, C. Serban, and L.

Diosan, “On the use of evolutionary algorithms

for test case prioritization in regression testing

considering requirements dependencies,” in

Proceedings of the 1st ACM International

Workshop on AI and Software Testing/Analysis,

2021, pp. 1–8.

[52] A. S. Yaraghi, M. Bagherzadeh, N. Kahani, and

L. C. Briand, “Scalable and accurate test case

prioritization in continuous integration

contexts,” IEEE Transactions on Software

Engineering, vol. 49, no. 4, pp. 1615–1639,

2022.

[53] R. Cheng, L. Zhang, D. Marinov, and T. Xu,

“Test-case prioritization for configuration

testing,” in Proceedings of the 30th ACM

SIGSOFT International Symposium on Software

Testing and Analysis, 2021, pp. 452–465.

[54] S. Iqbal and I. Al-Azzoni, “Test case

prioritization for model transformations,”

Journal of King Saud University-Computer and

Information Sciences, vol. 34, no. 8, pp. 6324–

6338, 2022.

[55] U. Geetha, S. Sankar, and M. Sandhya,

“Acceptance testing based test case

prioritization,” Cogent Engineering, vol. 8, no.

1, p. 1907013, 2021.

[56] N. Tasneem, H. B. Zulzalil, and S. Hassan,

“Enhancing agile software development: A

systematic literature review of requirement

prioritization and reprioritization techniques,”

IEEE Access, 2025.

[57] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al.,

“A density-based algorithm for discovering

clusters in large spatial databases with noise,” in

kdd, vol. 96, no. 34, 1996, pp. 226–231.

[58] H. Spieker, A. Gotlieb, D. Marijan, and M.

Mossige, “Reinforcement learning for automatic

test case prioritization and selection in

continuous integration,” in Proceedings of the

26th ACM SIGSOFT international symposium

on software testing and analysis, 2017, pp. 12–

22.

[59] C. J. Watkins and P. Dayan, “Q-learning,”

Machine learning, vol. 8, no. 3, pp. 279–292,

1992.

[60] G. Rothermel, R. H. Untch, C. Chu, and M. J.

Harrold, “Prioritizing test cases for regression

testing,” IEEE Transactions on software

engineering, vol. 27, no. 10, pp. 929–948, 2001.

