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ABSTRACT: This study presents an integrated approach combining Electrical Resistivity Survey
(ERS) and Standard Penetration Test (SPT-N) data to improve subsurface characterization in alluvial
soils, overcoming limitations of conventional drilling methods including logistical difficulties in
mobilizing rotary drilling rigs measurement errors, high costs, and terrain constraints in difficult
low-accessibility areas. A novel multivariate Artificial Neural Network (ANN) framework was
developed using TensorFlow-Kera’s, implementing feedforward architecture with backpropagation
learning. The model incorporates an innovative hyperparameter tuning protocol that systematically
evaluates network depth (1-5 hidden layers) and complexity (2-10 neurons/hidden layer), identifying a
4-layer configuration provide optimal predictive accuracy (adjusted R® = 0.99, RMSE = 6.36, MAPE =
1.1%, MSLE =0.01) with effectively balancing between both underfitting and overfitting tendencies.
The finalized model transforms ERS and SPT-N inputs into predictive multivariate regression
equations for key geotechnical parameters estimations & foundation design analyses by applying
backpropagations feedforward analysis on well trained & tested modular weight-bias matrixes of each
hidden layer. This methodology advances Sustainable Development Goal 9 (SDG 9) by enabling
efficient, non-invasive subsurface investigations in challenging environments (floodplains, remote
areas). Specifically, it addresses Target 9.1 (resilient infrastructure development) and Target 9.4
(sustainable industrialization) through its reduced reliance on conventional drilling, demonstrating how
machine learning can enhance geotechnical practice while supporting sustainable infrastructure

planning.
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INTRODUCTION

Recent  advancements in  subsurface
characterization have increasingly focused on the
integration of machine learning (ML) with traditional
geophysical and geotechnical investigation techniques.
This convergence is transforming how engineers interpret
subsurface data and predict soil behavior, especially in
data-scarce or difficult-to-access environments.

A comprehensive review presented by the
authors of Machine Learning-Aided Characterization
Using Geophysical Data Modalities (2022) outlines how
ML can collaborate with physics-based models to
improve resolution, reliability, and interpretation of
subsurface  features.Lozi¢ and Mirceta (2024)
demonstrated the effectiveness of ML by jointly
analyzing geophysical and borehole data in karst
environments.
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Their work, centered on the Gusi¢ Polje 2
Compensation Basin for the Senj 2 Hydroelectric Power
Plant, developed a 3D spatial model that predicted
ground settlement while mapping uncertainty. Similarly,
Li (2020) addressed data scarcity issues by integrating
seismic survey results, well logs, and core samples using
ML algorithms.

This  integration  enhanced  subsurface
interpretation through synthetic log generation, fracture
detection, and reinforcement learning for automatic
history matching.

In mineral exploration, Balaguera et al. (2024)
employed ML to predict petrophysical properties and
classify lithofacies at the Riotinto mine, while Horrocks
(2019) successfully developed ML workflows that
synthesized geological logs, multi-element geochemical
assays, and 3D geophysical inversion models at the
Kevitsa Ni-Cu-PGE deposit in Finland. These studies
highlight the growing reliability of ML in diverse
geological conditions.
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In conventional geotechnical practice, the
Standard Penetration Test (SPT) remains a widely used
tool for evaluating soil resistance. It informs essential
parameters like internal friction angle, unit weight,
cohesion, and modulus of elasticity (Cosenza et al., 2006;
Jay, Ameratunga, Sivakugan, Das, 2016). However, SPT
is often considered time-consuming and expensive
(Schmertmann, 2008; Adewoyin et al., 2017). Especially
in remote or logistically challenging areas, traditional
SPT campaigns are frequently limited due to equipment
constraints and cost (Gordon and Fletcher, 1965; Yusuf
and Kurniawan, 2024).

In response, geophysical techniques have
gained traction as rapid, cost-effective, and non-invasive
alternatives. Among these, Electrical Resistivity Surveys
(ERS) are increasingly adopted for engineering site
characterization, as noted by Samouélian et al. (2005),
Cosenza et al. (2006), Pozdnyakov et al. (2006), and
Siddiqui and Osman (2013). The ERS method, especially
Vertical Electrical Sounding (VES), offers a simple and
economical means of gathering subsurface data.
Baharom, Azahar, Syed, Irfan, and Siddiqui (2012)
identified ERS as a viable complement or substitute to
SPT, particularly in terrains where drilling is challenging.

Establishing empirical correlations between
geophysical properties (e.g., electrical resistivity) and
geotechnical parameters (e.g., SPT-N values) has become
essential. Islam et al. (2020) showed that reliable
correlations between resistivity and SPT can improve
geotechnical evaluations and soil classification.
Numerous studies have attempted to establish such
relationships, exploring how resistivity varies with index
properties like compaction, texture, and moisture content
(Mariusz et al., 2020; Wasayo and Sahito, 2023; Juliana
et al., 2021). The underlying principle is that both
electrical resistivity and SPT-N values exhibit
depth-dependent variation due to changes in soil density
and shear strength.

F.l. Siddiqui and S.B.A.B.S. Osman (2013),
along with S.N. Mohd Akip Tan et al. (2018), explored
correlations between SPT-N and resistivity across
different soil profiles. Additional correlations with soil
plasticity, cohesion, and friction angle have also been
examined (Sinta et al., 2018; Kibria and Hossain, 2012).

Beyond SPT correlations, electrical resistivity
has been linked to a range of geotechnical and hydraulic
parameters, including water content, salinity, thermal
resistivity, cation exchange capacity (CEC), and
hydraulic conductivity (Abu-Hassanein et al., 1996; Erzin
et al., 2010; Kalinski and Kelly, 1993, 1994; McCarter,
1984; Pozdnyakova et al., 2001; Schwartz et al., 2008;
Son et al., 2009).

Notably, Cosenza et al. (2006) conducted a 2D
resistivity survey using a Wenner array, while Sudha et
al. (2009) demonstrated site-specific correlations between
2D tomography results and SPT data. However, Braga et
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al. (1999) observed a weak relationship between SPT and
resistivity in sandy-clay formations, indicating the need
for site-specific calibration. Liu et al. (2008) and Oh and
Sun (2008) reported strong correlations between
resistivity and both SPT and compressive strength in
soil-cement mixtures and earth dams, respectively.

Despite the success of these studies, many
relied on costly hardware, advanced electrode switching
devices, and proprietary data inversion software. Their
complex nature and demand for skilled personnel
increase implementation costs (Cosenza et al., 2006; Liu
et al., 2008; Oh and Sun, 2008; Sudha et al., 2009).

Crucially, none of these studies examined the
correlation between SPT and electrical resistivity
obtained via the simpler and more affordable Vertical
Electrical Sounding (VES) method (Fahad Irfan Siddiqui
and Baharom Azahar Syed, 2012). This presents an
opportunity for developing data-driven machine learning
models that exploit low-cost VES data to estimate
geotechnical properties, such as SPT-N values, especially
in areas where traditional testing is infeasible.

By combining ERS data with ML algorithms
and SPT-based field records, robust correlation models
can be developed to aid in soil classification, compaction
assessment, and foundation design particularly in
geologically complex and logistically constrained
environments (G. Kibria and M.S. Hossain, 2012; F.I.
Siddiqui and S.B.A.B.S. Osman, 2013).

RESEARCH OBJECTIVES

. To conduct the Standard Penetration Test
(SPT) for determining soil penetration
resistance at various depths.

. To perform an electrical resistivity survey

(VES method) for subsurface characterization
relevant to soil penetration resistance.

. To investigate the interrelationship between
SPT N-values and electrical resistivity with
depth for assessing soil penetration resistance.

. To apply advanced machine learning
techniques, particularly  Artificial Neural
Networks (ANNS), to mathematically model
and analyze the patterns between electrical
resistivity and soil penetration resistance using
reliable statistical performance measures.

METHODOLOGY

The research is structured into five key phases.
The first phase involves comprehensive field
investigations, comprising the Standard Penetration Test
(SPT) to assess soil penetration resistance and the
Vertical Electrical Sounding (VES) technique to
characterize subsurface electrical resistivity profiles. The
second phase centers on the development of a predictive
model using Artificial Neural Networks (ANN), utilizing
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both training and testing datasets to learn complex
nonlinear patterns between geotechnical and geophysical
parameters. In the third phase, hyperparameter tuning is
systematically performed to optimize model architecture,
ensuring a balance between underfitting and overfitting.
The fourth phase entails rigorous model evaluation using
standard statistical performance metrics, followed by the
prediction of soil electrical resistivity values up to depths
of 100 meters. The fifth and final phase focuses on
formulating a multivariate regression framework and
validating its statistical robustness through detailed
diagnostic analyses to confirm the model's predictive
accuracy and reliability.

FIELD INVESTIGATIONS

To achieve the research objectives, a field
investigation was conducted comprising the following
activities:

. Electrical Resistivity Survey (ERS)
. Standard Penetration Test (SPT)

The site selected for this field investigation is
located in Khanewal District, which lies at an average
elevation of 130 meters above sea level, with the highest
elevation reaching 252 meters at the town of Attari.
Strategically positioned in the central region of Pakistan,
Khanewal is equidistant from Karachi and Peshawar and
serves as a critical node on the country's major

transportation networks, including the main railway
and the

routes, the historic Grand Trunk Road,
Lahore-Multan Motorway.
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Figure 1 Location of Khanewal District (highlighted
in Red) in Punjab
Geographically, Khanewal District is bordered
by Jhang and Toba Tek Singh districts to the north,
Vehari District to the south, Sahiwal District to the east,
and Multan District to the west.
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Figure 2 Punjab District Map

This area once formed the southern shoreline
of the River Ravi, which flowed from east to west of
Multan city. Over time, the river's course shifted,
transforming the barren landscape into fertile land due to
the accumulation of alluvial soil.

b A :
ILayyah F Tandliany
y.y }/ ’ Toba Tek Singh -
[ Rahme Shah
'E Chaubara P \ e
# i JShorkoty > Fos
@)  Rehmatabad fied Kamalia® "
it « s Sahiwe
B 5
i«')v 2
1% Len
X Rangp, Chichawatni
botAddu /¥ Mian Chafinu rNard?

Chowk \’..r" Khanewal & Arifwala
"Selhar 02 Multan . F' &
| g . Burewala
i 5 2
| ¥ \ o
B A Vehari /_Ba\,ha‘f‘
p@ é bé Sultanpur AL
| Shujaabad SEuddange

e B -
D ik
Rohilanwial SuTapcs Mallsfg Hasilpur Dung:
3 r .
_),.\’ Khairpur Haroona
I 4 - - N H

Bt 2 Pl R L ol

Figufe 3 Khanewal District Punjab

Electrical Resistivity Survey (ERS) Electrical
resistivity surveys were performed at multiple selected
locations within the study area using Schlumberger array.
The primary objective of the ERS was to estimate
variations in apparent resistivity with depth and assess
corresponding changes in subsurface lithology, saturation
states, and soil compactness. These measurements were
carried out in accordance with ASTM Designation:
D6431 — 18, ensuring adherence to standardized
procedures for subsurface electrical resistivity surveys.
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Figure 4 Schlumberger array Configuration

The apparent resistivity measurements were
obtained using the TERCA3 C.A 6470N resistivity meter.
The instrument enabled precise recording of resistivity
variations, which are indicative of lithological
heterogeneity and geotechnical properties of the site.
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Standard Penetration Test (SPT) To delineate the major
subsoil types and evaluate their geotechnical
characteristics, Standard Penetration Tests (SPTs) were
conducted at various borehole locations within the site
area. These boreholes were drilled to a maximum depth
of 100 meters each using a straight rotary drilling
machine. The tests were performed in accordance with
ASTM D1586, ensuring compliance with industry
standards for subsurface exploration and soil sampling.
SPT blow counts were recorded for every 18-inch total
penetration of the split-barrel sampler. The reported
N-values correspond to the number of blows required to
drive the sampler through the final 12 inches of the
penetration, as prescribed by standard testing procedures.
These values were subsequently used to assess the
compactness and bearing capacity of the subsoil layers.

Predictive modelling using artificial neural networks
(ANN): In this study, Artificial Neural Networks (ANNS)
were employed to develop a predictive model for
estimating target geotechnical parameters. A learning rate
of 0.001 was used during training to ensure smooth and
stable convergence of the model by applying small
incremental updates to the network weights in the
direction of the negative gradient (Goodfellow, Bengio,
& Courville, 2016). The Mean Squared Error (MSE)
function was adopted as the loss metric, with a
convergence criterion of MSE < 0.001, ensuring a
sufficiently accurate fit between predicted and observed
values.

Crown Sheave(s)
or Pulley(s)

Typically 1-in. (25-mm)
Diameter Manila Rope

18 in. (457mm)

Figure 6 Standard Penetration Test Procedure
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Linear and Non-Linear Activation Functions in ANN

Input Weights B ) Bias
x1 ——— W1 ‘ Activation Output
Function
x2 W2 |_|
E : | {(x)l y
XN Wn

Figure 7 ANN Schematic Diagram

The ANN architecture was varied by altering
the number of hidden layers from 1 to 5, and the number
of neurons per hidden layer was consistently maintained
at approximately twice the number of total hidden layers
across all experimental cases. This ratio-based heuristic
helps balance model complexity and generalization
(Zhang, Patuwo, & Hu, 1998). A linear identity activation
function was used in the hidden layers. While non-linear
activation functions are often preferred for capturing
complex relationships, the identity function is useful
when the data shows near-linear behavior or when
preserving gradient flow without distortion is important,
particularly in regression-based problems (Heaton, 2008).

The network was trained using the Adam
optimizer, which is an adaptive moment estimation
technique combining the benefits of RMSprop and
momentum optimization. It adjusts the learning rate for
each weight individually based on first- and second-order
moment estimates of gradients, which improves
convergence speed and stability in the presence of noisy
gradients (Kingma & Ba, 2015).

The backpropagation algorithm was used to
iteratively update the weights of the network. During
each epoch, the partial derivatives of the MSE loss
function were calculated with respect to the network’s
weights and biases. These gradients were propagated
backward through the network layers, enabling the
optimizer to minimize the loss function efficiently
(Rumelhart, Hinton, & Williams, 1986). The guiding
principle of the training process was to drive the partial
derivatives of the loss function close to zero, indicating
convergence to a local or global minimum.
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Figure 8 Linear Identity Activation Function

Model  performance  was  continuously
monitored using a validation dataset to track validation
loss and prevent overfitting. The minimum validation loss
was used to determine optimal stopping criteria
(Prechelt, 1998). The validation phase, supported by
backpropagation analysis, verified that the
model-maintained generalizability and minimized error
not just on the training data but also on unseen test data.
HYPERPARAMETER TUNING: Hyperparameter tuning
refers to the process of systematically selecting the
optimal  configuration of  external  parameters
(hyperparameters) that govern the structure and learning
behavior of a machine learning model in this case, an
Artificial Neural Network (ANN).

In this study, the tuning process involved
modifying the number of hidden layers while maintaining
a fixed ratio of neurons per hidden layer (i.e., the same
number of neurons across all hidden layers). For each
configuration (i.e., each iteration involving a different
number of hidden layers), the dataset was randomly split
such that 60% of the data was used for training and the
remaining 40% was used for testing.

In both the training and testing phases, five
distinct modes of analysis were conducted using two
input parameters:

. x1= Depth (m)

o x2=SPT-N

The corresponding output variable was:

. y=Apparent Resistivity (ohm-m)

Each mode of analysis involved a variation in
the number of hidden layers and the number of neurons
per hidden layer, which were treated as hyperparameters.

O

Output Layer e B

Figure 9 ANN With One Hidden Layer
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Input Layer & B Hidden Layer & B° Hidden Layer e B° Output Layer & B’
Figure 10 ANN With Two Hidden Layers

[nput Layer & B Hidden Layer & R® Hidden Layer & B® Hidden Layer & B* Outout Layer & R
Figure 11 ANN With Three Hidden Layers
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ANN PREDICTIVE MODEL EVALUATION
PARAMETERS: To comprehensively assess the
performance and robustness of the regression model,
multiple statistical and error metrics were calculated for
both training and testing datasets. Additionally, these
metrics were applied during the prediction phase on new
data to diagnose model health over time.

Mean Absolute Error (MAE): MAE computes the
average magnitude of errors between predicted and actual
apparent resistivity values, offering an interpretable
measure of average model deviation without penalizing
large outliers excessively (Willmott & Matsuura, 2005).

Mean Squared Error (MSE): MSE calculates the
average squared error, heavily penalizing large
discrepancies in resistivity prediction relative to
measured depth and SPT-N values (Chai & Draxler,
2014). It provides a sensitive metric to detect larger
model errors that might affect interpretation of subsurface
conditions.

Root Mean Squared Error (RMSE): RMSE, the square
root of MSE, translates the error metric back into
physical units of apparent resistivity, facilitating intuitive
understanding of typical prediction errors (Hyndman &
Koehler, 2006).

Mean Absolute Percentage Error (MAPE): MAPE
expresses average error as a percentage of observed
resistivity, allowing scale-independent evaluation of
prediction accuracy across varying depths and SPT-N
values (Makridakis, 1993).

R-squared (R?): R? measures the proportion of variance
in apparent resistivity explained by the ANN model using
depth and SPT-N data (Draper & Smith, 1998). A high
R2 indicates that the model captures the underlying
physical relationships effectively

Adjusted R-squared: Adjusted RZ refines RZ by
penalizing unnecessary complexity, ensuring that added
model layers or neurons improve explanatory power
without overfitting depth and SPT-N correlations
(Kutner et al., 2005).

Pearson Correlation Coefficient: Pearson’s correlation
quantifies the linear relationship between predicted and
observed resistivity, supporting the evaluation of the
ANN’s ability to capture linear trends between depth and
SPT-N (Rodgers & Nicewander, 1988).

Spearman Rank Correlation: Spearman’s rank
correlation  complements Pearson by measuring
monotonic  relationships, useful ~when resistivity

responses vary non-linearly with depth and SPT-N values
(Zar, 2005).

Maximum Error: Maximum error identifies the largest
prediction deviation, crucial for assessing worst-case
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reliability of resistivity estimation, which is important for
safety-critical subsurface evaluations (Willmott, 1982).

Median Absolute Error: The median absolute error
provides a robust central measure of prediction error, less
influenced by extreme resistivity outliers, aiding stable
model performance assessment (Leys et al., 2013).

Explained Variance Score: Explained variance
quantifies how well the ANN accounts for resistivity
variation, providing an alternative perspective to R?
especially under non-linear or heteroscedastic noise
conditions (Friedman et al., 2001).

Bias (Mean Error): Bias measures systematic over- or
underestimation trends in predicted resistivity, informing
potential model calibration needs to correct directional
errors (Hyndman & Koehler, 2006).

Mean Squared Logarithmic Error (MSLE): MSLE is
appropriate when apparent resistivity spans several orders
of magnitude, as it reduces the impact of large absolute
differences while penalizing underestimations (Jiang et
al., 2020).

Huber Loss (delta = 1.0): Huber loss balances
sensitivity to small errors with robustness against outliers,
improving ANN stability in predicting resistivity
influenced by variable subsurface conditions (Huber,
1964).

Formulations of multivariate regression framework
using ANN trained data set: A multivariate regression
framework was developed using an Artificial Neural
Network (ANN) trained on two input variables depth (x1)
and SPT-N value (x2) to predict the target output:
apparent resistivity (ohm-m). The ANN model was
implemented with a linear activation function throughout,
ensuring that the entire network acts as a generalized
linear regression model. Across multiple iterations, the
model architecture varied in terms of the number of
hidden layers, ranging from 1 to 5. However, for each
iteration, the number of neurons in each hidden layer was
fixed as twice the number of total hidden layers. This
configuration maintains balance between  model
complexity and generalization. The trained ANN’s
transformation can be mathematically described by a
sequence of affine transformations, which, due to the
identity activation, simplify to a direct linear mapping
from input to output.

Because of the identity activations, the
network output simplifies to an affine transformation of
the inputs. Since all activation functions are linear, this
nested linear transformation reduces to a single affine
function: Thus, regardless of the number of hidden layers
or neurons, the ANN behaves as a linear regression
model predicting apparent resistivity as an affine
combination of depth and SPT-N value.
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RESULTS AND DISCUSSION

Standard Penetration Test (SPT) data was
collected from 16 boreholes (BH-01 to BH-16) up to a
depth of 100 meters, with tests performed at alternating
intervals (1.5 m, 2.0 m, 2.5 m, and 3.0 m) to optimize
subsurface investigation efficiency. The N-values were
recorded at varying depths, ensuring comprehensive soil
characterization while minimizing redundant testing. A
target average SPT-N profile was established,

progressively increasing from 13 at 1.0 m depth to 100 at
76.5 m and beyond, reflecting typical soil strength trends
with depth. The individual borehole data were plotted as
dashed lines in varying colors, while the averaged profile
(BH Avg) was represented as a solid black line for
comparison. The resulting profile demonstrates the
expected increase in SPT-N values with depth due to soil
compaction and overburden pressure, with localized
variations attributed to heterogeneous soil layers.

Standard Penetration Test (SPT) N-Values
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Figure 14 SPT-N Profile of All Investigation Points
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The apparent resistivity distribution across 25 realistic field conditions accounting for lateral
Vertical Electrical Sounding (VES) curves (dashed lines) heterogeneity and measurement uncertainties.
and their ensemble average (solid black line) plotted The characteristic resistivity increase with
against depth (0-100m) wusing Schlumberger array depth follows the expected geological trend, reflecting:
configuration. Individual VES curves exhibit +15% that highlights progressive compaction of unconsolidated
variation from the mean resistivity profile, simulating near-surface materials
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Figure 15 Mean Electrical Resistivity Profile
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To develop an Artificial Neural Network
(ANN) model for estimating subsurface conditions, mean
SPT-N values and corresponding mean electrical
resistivity profiles were utilized as the primary input
features. The dataset, comprising 199 data points over a
100-meter depth profile, was systematically divided into
training, testing, and prediction phases. The training
phase used data up to 30 meters depth (59 data points),
allowing the model to learn the underlying relationship

between geotechnical and geophysical parameters. The
subsequent testing phase employed data from 30 to 50
meters depth (40 data points) to evaluate the model's
generalization capability on unseen data. Finally, the
prediction phase focused on the 50 to 100 meters depth
range (100 data points), where the trained ANN model
was applied to estimate SPT-N values solely based on
electrical resistivity inputs.

Combined Mean Apparent Resistivity & SPT-N Profile
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Figure 16 ANN Training, Testing & Prediction Framework Data

The initial Artificial Neural Network (ANN)
model was configured with a single hidden layer
comprising two neurons, resulting in a simple
architecture with a total of two neurons. The training
process employed the Adam optimization algorithm,
using a conservative learning rate of 0.001, and a lower
bound of 0.001 was set for the Mean Squared Error
(MSE) to define the convergence threshold. During the
training phase, a dataset comprising 59 data points up to a
depth of 30 meters was used. In this configuration, the
Standard Penetration Test (SPT-N) values served as
independent input parameters, while the corresponding
apparent electrical resistivity values were treated as the
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target output variables. Following the training, the model
was tested using 40 data points from depths ranging
between 30 meters and 50 meters. The testing results,
used to evaluate the generalization capability of the
trained model, are depicted and discussed in the
subsequent section. In both the training and testing
phases, five distinct modes of analysis were conducted
using two input parameters:

. x1= Depth (m)

. x2=SPT-N

The corresponding output variable was:

. y=Apparent Resistivity (ohm-m)
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Training Loss Curve (M5E)
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Figure 17 Training Phase Results with One Hidden Layer ANN Model

Test Data: Actual vs Predicted y

configuration, Standard Penetration Test (SPT-N) values

o Actualy were provided as independent input variables, while the
Predicted y corresponding apparent electrical resistivity values were
s used as the target output variables. After training, the
750 4 o’ model was tested using 40 data points from depths
¢ between 30 and 50 meters to assess its generalization
o’ performance. The testing outcomes are presented and
00 o analyzed in the following section.
> ...
650 .,-" Table 1 Model Evaluation Parameters of One Hidden
o’ Layer ANN Model
.. :
5001 so*° Training Testing
58° Phase Phase
v . . . ‘ ‘ ‘ . No of Hidden Layers 1 1
0 5 10 msampI:EI'ndex 2530 B 40 MAE 3.662644 20.661665
. . . MSE 22.370215 517.490783
Figure 18 Testing Phase Results of One Hidden Layer RMSE 4.729716 22 748424
ANN Model MAPE (%) 1.802292 3.006503
o R2 0.998772 0.84753
The second Atrtificial Neural Network (ANN) Adj. R 0.998728 0.839289
model was developed with two hidden layers, each Pearson r 0.999419 0.999688
comprising four neurons, resulting in a moderately Spearman p 1 1
complex architecture with a total of eight neurons. The Max Error 15.277786 38.696045
training process utilized the Adam optimization algorithm Median AE 3.102112 20.357605
with a conservative learning rate of 0.001, and a lower Explained Variance 0.998778 0.97331
bound of 0.001 was established for the Mean Squared Bias -0.345006 -20.661665
Error (MSE) to guide convergence. During the training MSLE 0.00131 0.001002
phase, the model was trained using a dataset of 59 data Huber Loss 3.177797 20.161665
points corresponding to depths up to 30 meters. In this
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Table 2 Model Evaluation Parameters of Two Hidden
Layer ANN Model

Training Phase

Testing Phase

No of Hidden Layers 2 2
MAE 2.487471 13.474229
MSE 10.689337 228.022824
RMSE 3.269455 15.100425
MAPE (%) 1.172141 1.954439
R? 0.999413 0.932817
Adj. R2 0.999392 0.929186
Pearson r 0.999721 0.999599
Spearman p 1 1
Max Error 10.478317 26.627747
Median AE 2.101562 13.295013
Explained Variance 0.999414 0.986309
Bias -0.156638 -13.474229
MSLE 0.000536 0.000444
Huber Loss 2.051886 12.974229
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The third Artificial Neural Network (ANN)
model featured a more intricate architecture consisting of
three hidden layers, each containing six neurons, for a
total of 18 neurons. Training was conducted using the
Adam optimization algorithm with a conservative
learning rate of 0.001. To ensure convergence, a
minimum threshold of 0.001 was set for the Mean
Squared Error (MSE). A total of 59 data points,
representing depths up to 30 meters, were used to train
the model. In this setup, SPT-N values functioned as the
independent input parameters, while the corresponding
apparent electrical resistivity values were designated as
the target outputs. The model's generalization capability
was subsequently evaluated using 40 testing data points
spanning depths from 30 to 50 meters.
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T
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Table 3 Model Evaluation Parameters of Three
Hidden Layer ANN Model
_ Testing

Training Phase Phase
No of Hidden Layers 3 3
MAE 1.979951 7.283391
MSE 5.682301 73.029383
RMSE 2.383758 8.545723
MAPE (%) 0.765526 1.050359
R2 0.999688 0.978483
Adj. R2 0.999677 0.97732
Pearson r 0.999848 0.99949
Spearman p 1 1
Max Error 6.138252 16.477722
Median AE 1.788208 7.248474
Explained Variance 0.99969 0.993678
Bias 0.205338 -7.181261
MSLE 0.00016 0.000143
Huber Loss 1.512541 6.798303
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The fourth Artificial Neural Network (ANN)
model employed a more complex structure with 4 hidden
layers, each containing 8 neurons, totaling 32 neurons.
Training was conducted on 59 data points up to a depth
of 30 meters using the Adam optimizer, with a learning
rate of 0.001 and a Mean Squared Error (MSE) threshold
of 0.001 to ensure convergence. In this model, SPT-N
values served as the input parameters, while apparent
electrical resistivity values were the target outputs.

The model's generalization was tested using 40
data points from depths between 30 and 50 meters.
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The fifth Artificial Neural Network (ANN)

Training Phase

Testing Phase

No of Hidden Layers 4 4
MAE 1.906503 470701
MSE 4.976199 31.855336
RMSE 2.23074 5.644053
MAPE (%) 0.702363 0.681321
R2 0.999727 0.990614
Adj. R? 0.999717 0.990107
Pearson r 0.999868 0.999427
Spearman p 1 1
Max Error 4.81488 12.012146
Median AE 1.921692 4.244629
Explained Variance 0.999733 0.995952
Bias 0.348818 -4.256454
MSLE 0.000106 0.000063
Huber Loss 1.445624 4.21018
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model featured a deeper architecture comprising 5 hidden
layers, each with 10 neurons, resulting in a total of 50
neurons. The model was trained using 59 data points
collected from depths up to 30 meters. The training
employed the Adam optimization algorithm with a
learning rate of 0.001 and a Mean Squared Error (MSE)
threshold of 0.001 to ensure convergence. In this
configuration, SPT-N values were wused as the
independent input variables, while the corresponding
apparent electrical resistivity values served as the target
outputs. The generalization ability of the model was
evaluated using 40 testing data points from depths
between 30 and 50 meters.
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No of Hidden Layers
MAE

MSE

RMSE

MAPE (%)

RZ

Adj. R?

Pearson r
Spearman p

Max Error

Median AE
Explained Variance
Bias

MSLE

Huber Loss

Training Phase

5
1.930802
5.719873
2.391626
0.701291
0.999686
0.999675
0.999868

1
4.995209
1.627426
0.999731
-0.911241
0.000112
1.493392

Testing
Phase
5
6.091353
50.21939
7.086564
0.883478
0.985204
0.984404
0.999414
1
13.790222
6.022308
0.995944
-6.037584
0.0001
5.612673
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DISCUSSION: Optimal Model Complexity and
Hyperparameter Tuning: The experimental results
reveal a critical insight into model complexity: the
4-hidden-layer neural network achieves an optimal
balance between underfitting and overfitting directly
linked to hyperparameter tuning. For models with 1-3
layers, systematic underfitting is evident. Training errors
(MAE: 3.66 — 1.98; MSE: 22.37 — 5.68) and test errors
(MAE: 20.66 — 7.28; MSE: 517.49 — 73.03) decrease
progressively as capacity increases, confirming that
shallow networks fail to capture underlying data patterns.
The 4-layer model peaks in generalization, yielding
the lowest test errors (MAE: 4.71, MSE: 31.86)
and highest robustness (R2 0.9906, Adj. Rz 0.9901).
This indicates sufficient complexity to model nonlinear
relationships without compromising stability.

However, the 5-layer model exhibits overt
overfitting, marked by degraded test performance despite
marginal training gains. Test MAE rises by 29% (4.71 —
6.09), MSE by 58% (31.86 — 50.22), and RMSE by 26%
(5.64 — 7.09). Crucially, R? and Adj. R? decline (0.9906



Pakistan Journal of Scientific Research (Vol. 5 No. 1 June, 2025)

— 0.9852; 0.9901 — 0.9844), while bias escalates (—4.26
— —6.04).

Beyond 4 layers, overfitting emerges due
to excessive capacity relative to the problem’s true
complexity. The 5-layer model’s test performance
degrades sharply (MAE 129%, MSE 158%, R? |0.5%),
while training metrics stagnate (e.g., training MAE: 1.906
— 1.931). This divergence occurs because:

1. Noise Memorization: The 5-layer network, with
its expanded representational capacity, fits spurious

Table 6 Model Evaluation Parameters Summary

patterns and noise in the training data. This is reflected in
the surge in test bias (—4.26 — —6.04) and Huber loss
(421 — 5.61)—metrics sensitive to erroneous
extrapolations.

2. Variance Inflation: As depth increases, the
model’s sensitivity to training-specific artifacts amplifies.
The rise in RMSE (5.64 — 7.09) and Max Error (12.01
— 13.79) confirms unstable predictions on unseen data.

DATATYPE = TRAINING DATA TEST DATA

No of Hidden Layers 1 2 3 4 5 1 2 3 4 5

MAE 3.7 25 20 19 1.9 20.7 135 7.3 4.7 6.1
MSE 224 107 57 50 57 5175 228.0 73.0 31.9 50.2
RMSE 4.7 33 24 22 2.4 22.7 15.1 8.5 5.6 7.1
MAPE (%) 1.8 1.2 08 07 0.7 3.0 2.0 1.1 0.7 0.9
R? 1.0 1.0 10 10 1.0 0.8 0.9 1.0 1.0 1.0
Adj. R? 1.0 1.0 10 10 1.0 0.8 0.9 1.0 1.0 1.0
Pearson r 1.0 1.0 10 10 1.0 1.0 1.0 1.0 1.0 1.0
Spearman p 1.0 10 10 10 1.0 1.0 1.0 1.0 1.0 1.0
Max Error 15.3 105 6.1 438 5.0 38.7 26.6 16.5 12.0 13.8
Median AE 31 21 18 19 1.6 20.4 13.3 7.2 4.2 6.0
Explained Variance 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Bias -0.3 -02 02 03 -09 -207 -13.5 -7.2 -4.3 -6.0
MSLE 0.0 00 00 00 0.0 0.0 0.0 0.0 0.0 0.0
Huber Loss 3.2 21 15 14 1.5 20.2 13.0 6.8 4.2 5.6

Graphically, this manifests as a divergence
trend: training and test errors converge optimally at 4
layers (minimal gap), then sharply diverge at 5 layers—a
classic U-shaped bias-variance curve. The post-4-layer
degradation highlights a fundamental machine learning
principle: hyperparameters like layer depth must be tuned
to match data complexity. Excessive depth without
commensurate data volume or regularization (e.g.,
dropout, L2) inevitably causes overfitting. Thus, while
deeper networks theoretically approximate more complex
functions, practical efficacy depends on disciplined
hyperparameter optimization anchored in validation
performance.

PREDICTION EVALUATION OF OPTIMAL ANN
MODEL: After comprehensive analysis, the Artificial
Neural Network (ANN) model with four hidden layers
and a total of 32 neurons was finalized as the optimal
configuration due to its robust generalization capabilities.
To enhance the training phase, a total of 99 data points up
to a depth of 50 meters were utilized. Subsequently, the
model was employed to predict the apparent electrical
resistivity values for approximately 100 data points
corresponding to depths ranging from 50 meters to 100
meters. This segment of data was not used during the
training or testing phases and served exclusively for
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model prediction. The prediction performance of the
ANN model is evaluated in the subsequent section using
various statistical indicators.

From 50 meters to 100 meters, the apparent
resistivity values were predicted using the finalized ANN
model. These predicted values were further utilized in an
enhanced version of the model to improve its accuracy
and reliability. In the final evaluation phase, the model
was retrained using the entire dataset up to 100 meters,
comprising 199 data points. The model’s predictions
were then compared against the actual mean apparent
resistivity profile values to assess its overall performance
and alignment with observed data.

This finalized Artificial Neural Network (ANN)
model, consisting of four hidden layers with a total of 32
neurons, was trained using the complete dataset
extending up to 100 meters depth. The model
demonstrates excellent prediction accuracy and strong
generalization performance. This is evidenced by the
consistently low error metrics including MAE, MSE, and
RMSE alongside near-perfect correlation coefficients
(Pearson = 0.9998; Spearman = 1.0) and a very high
coefficient of determination (R? = 0.9996). These results
collectively indicate that the model is well-calibrated for
predicting apparent electrical resistivity values based on
SPT-N data.
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Multivariate equation derivation using optimal ann
model hidden layers modular weights & bias: To
extract the analytical form of the trained Artificial Neural
Network (ANN) model, linear algebraic matrix
multiplication and multivariate calculus principles is
utilized to consolidate the modular structure of the
optimized feedforward network as finalized in previous
section.

The Python implementation provided utilizes
NumPy for efficient tensor operations. The overall
transformation from input features is linearized by
recursively propagating the weight matrices through
matrix multiplication, where

. x1= Depth (m)

o x2= SPT-N

The corresponding output variable was:

. y=Apparent Resistivity (ohm-m)

This approach effectively collapses the non-linear
transformations into an equivalent single-layer linear
model with two input features, yielding the final
expression in the canonical form:

Y =wlxl+w2x2+b
Where wl and w2 are the final composite weights
corresponding to input features x1 and x2, respectively,
and b is the consolidated bias term.

Table 7 Output Results

Parameter Value

Final Weight [0] 5.879061
Final Weight [1] 5.990524
Final Bias 1.020954

As per above outputs of Python implemented Numpy
code:
wl =5.879061
w2 =5.990524
b =1.020954
substituting these values back in
Y =wlxl+w2x2+b
Y =5.879061 x1 + 5.990524 x2 + b
Final Equation
p (Qm) = 5.879061 = Depth (m) + 5.990524
* (SPT — N Feild) + 1.020954
... Eq (1)

This reduction approach treats the composite
feedforward ANN as a series of affine transformations in
vector space, enabling the translation of deep-layered
nonlinear mappings into an interpretable parametric
linear form for two-input systems. Such extraction
provides a deterministic equivalent model, which can be
used for further parametric sensitivity analyses,
reduced-order modeling, or embedding within governing
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equations in hybrid physical-data-driven frameworks
(Goodfellow et al., 2016; Strang, 2016; Bishop, 2006).

CONCLUSION

1. This study successfully demonstrates a strong
correlation between soil apparent electrical resistivity
(in ohm-m) and SPT-N values, using a dataset of
100m depth. After training the dataset, an Artificial
Neural Network (ANN) model with four hidden
layers and eight neurons per hidden layer, employing
linear identity activation functions, proved to be a
reliable tool for predicting either apparent resistivity
or SPT-N values at depths beyond 100m. This
reliability is attributed to fine-tuning and achieving
an optimal balance during model training.

2. To maintain an optimal balance between underfitting
and overfitting, a novel approach is introduced. In
this mode of hyperparameter tuning, the number of
hidden layers is treated as a hyperparameter, while
the number of neurons per hidden layer is kept at a
fixed ratio relative to the total number of neurons.
The model is then fine-tuned based on the behavior
of statistical performance indicators such as MAPE,
MSE, R?, Adjusted R2, and RMSE. The hidden layer
configuration at which these metrics peak transition
occurs, that point is considered to provide the most
optimal trade-off between underfitting and
overfitting.

3. The Pearson and Spearman correlation coefficients
under the final tuned model architecture were
observed to be close to +1, indicating a strong linear
and monotonic relationship between the inputs and
outputs. This further supports the use of the linear
identity activation function in the ANN architecture.

4. For simplicity and preliminary estimation, a
linearized form of the most optimal neural network is
expressed through a Python-implemented equation
using NumPy for efficient tensor operations. The
model output is linearly propagated through
recursive matrix multiplication and can be expressed
approximately as presented in Eq (1). However, this
equation is only meant for initial estimation purposes.
For accurate results, users are advised to rely on the
full ANN model predictions rather than this
simplified linear equation

FUTURE RECOMMENDATIONS

1. The framework developed in this study can be
expanded to predict additional geotechnical
parameters such as cohesion, friction angle, or
undrained shear strength by integrating a wider range
of field and laboratory test data. This would further
enhance its applicability in  comprehensive
subsurface characterization.

2. The trained ANN model has the potential to be
incorporated into mobile applications or software
tools for real-time field use. Such tools would allow
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geotechnical engineers to input electrical resistivity
or depth data and instantly receive predicted SPT-N
values, or vice versa, thereby streamlining field
assessments and  reducing  dependence  on
conventional testing.

3. Future research can explore the validation of
predicted SPT-N values using 3D Finite Element
(FEM) models, where ANN-based estimates are

linked to the load-settlement response of foundations.

This hybrid approach could help evaluate the
practical structural implications of ANN predictions

and improve model robustness for design
applications.
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