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ABSTRACT: This study presents an integrated approach combining Electrical Resistivity Survey 

(ERS) and Standard Penetration Test (SPT-N) data to improve subsurface characterization in alluvial 

soils, overcoming limitations of conventional drilling methods including logistical difficulties in 

mobilizing rotary drilling rigs measurement errors, high costs, and terrain constraints in difficult 

low-accessibility areas. A novel multivariate Artificial Neural Network (ANN) framework was 

developed using TensorFlow-Kera’s, implementing feedforward architecture with backpropagation 

learning. The model incorporates an innovative hyperparameter tuning protocol that systematically 

evaluates network depth (1-5 hidden layers) and complexity (2-10 neurons/hidden layer), identifying a 

4-layer configuration provide optimal predictive accuracy (adjusted R
2
 = 0.99, RMSE = 6.36, MAPE = 

1.1%, MSLE =0.01) with effectively balancing between both underfitting and overfitting tendencies. 

The finalized model transforms ERS and SPT-N inputs into predictive multivariate regression 

equations for key geotechnical parameters estimations & foundation design analyses by applying 

backpropagations feedforward analysis on well trained & tested modular weight-bias matrixes of each 

hidden layer. This methodology advances Sustainable Development Goal 9 (SDG 9) by enabling 

efficient, non-invasive subsurface investigations in challenging environments (floodplains, remote 

areas). Specifically, it addresses Target 9.1 (resilient infrastructure development) and Target 9.4 

(sustainable industrialization) through its reduced reliance on conventional drilling, demonstrating how 

machine learning can enhance geotechnical practice while supporting sustainable infrastructure 

planning. 

Keywords: Artificial Neural Networks (ANN), Electrical Resistivity, Standard Penetration Test (SPT-N), 

Hyperparameter Tuning, TensorFlow-Keras Backpropagation, Mean Absolute Percentage Error (MAPE). 

 

 

INTRODUCTION 

 Recent advancements in subsurface 

characterization have increasingly focused on the 

integration of machine learning (ML) with traditional 

geophysical and geotechnical investigation techniques. 

This convergence is transforming how engineers interpret 

subsurface data and predict soil behavior, especially in 

data-scarce or difficult-to-access environments.  

 A comprehensive review presented by the 

authors of Machine Learning-Aided Characterization 

Using Geophysical Data Modalities (2022) outlines how 

ML can collaborate with physics-based models to 

improve resolution, reliability, and interpretation of 

subsurface features.Lozić and Mirčeta (2024) 

demonstrated the effectiveness of ML by jointly 

analyzing geophysical and borehole data in karst 

environments. 

 Their work, centered on the Gusić Polje 2 

Compensation Basin for the Senj 2 Hydroelectric Power 

Plant, developed a 3D spatial model that predicted 

ground settlement while mapping uncertainty. Similarly, 

Li (2020) addressed data scarcity issues by integrating 

seismic survey results, well logs, and core samples using 

ML algorithms.  

 This integration enhanced subsurface 

interpretation through synthetic log generation, fracture 

detection, and reinforcement learning for automatic 

history matching. 

 In mineral exploration, Balaguera et al. (2024) 

employed ML to predict petrophysical properties and 

classify lithofacies at the Riotinto mine, while Horrocks 

(2019) successfully developed ML workflows that 

synthesized geological logs, multi-element geochemical 

assays, and 3D geophysical inversion models at the 

Kevitsa Ni-Cu-PGE deposit in Finland. These studies 

highlight the growing reliability of ML in diverse 

geological conditions. 
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 In conventional geotechnical practice, the 

Standard Penetration Test (SPT) remains a widely used 

tool for evaluating soil resistance. It informs essential 

parameters like internal friction angle, unit weight, 

cohesion, and modulus of elasticity (Cosenza et al., 2006; 

Jay, Ameratunga, Sivakugan, Das, 2016). However, SPT 

is often considered time-consuming and expensive 

(Schmertmann, 2008; Adewoyin et al., 2017). Especially 

in remote or logistically challenging areas, traditional 

SPT campaigns are frequently limited due to equipment 

constraints and cost (Gordon and Fletcher, 1965; Yusuf 

and Kurniawan, 2024). 

 In response, geophysical techniques have 

gained traction as rapid, cost-effective, and non-invasive 

alternatives. Among these, Electrical Resistivity Surveys 

(ERS) are increasingly adopted for engineering site 

characterization, as noted by Samouëlian et al. (2005), 

Cosenza et al. (2006), Pozdnyakov et al. (2006), and 

Siddiqui and Osman (2013). The ERS method, especially 

Vertical Electrical Sounding (VES), offers a simple and 

economical means of gathering subsurface data. 

Baharom, Azahar, Syed, Irfan, and Siddiqui (2012) 

identified ERS as a viable complement or substitute to 

SPT, particularly in terrains where drilling is challenging. 

 Establishing empirical correlations between 

geophysical properties (e.g., electrical resistivity) and 

geotechnical parameters (e.g., SPT-N values) has become 

essential. Islam et al. (2020) showed that reliable 

correlations between resistivity and SPT can improve 

geotechnical evaluations and soil classification. 

Numerous studies have attempted to establish such 

relationships, exploring how resistivity varies with index 

properties like compaction, texture, and moisture content 

(Mariusz et al., 2020; Wasayo and Sahito, 2023; Juliana 

et al., 2021). The underlying principle is that both 

electrical resistivity and SPT-N values exhibit 

depth-dependent variation due to changes in soil density 

and shear strength. 

 F.I. Siddiqui and S.B.A.B.S. Osman (2013), 

along with S.N. Mohd Akip Tan et al. (2018), explored 

correlations between SPT-N and resistivity across 

different soil profiles. Additional correlations with soil 

plasticity, cohesion, and friction angle have also been 

examined (Sinta et al., 2018; Kibria and Hossain, 2012). 

 Beyond SPT correlations, electrical resistivity 

has been linked to a range of geotechnical and hydraulic 

parameters, including water content, salinity, thermal 

resistivity, cation exchange capacity (CEC), and 

hydraulic conductivity (Abu-Hassanein et al., 1996; Erzin 

et al., 2010; Kalinski and Kelly, 1993, 1994; McCarter, 

1984; Pozdnyakova et al., 2001; Schwartz et al., 2008; 

Son et al., 2009). 

 Notably, Cosenza et al. (2006) conducted a 2D 

resistivity survey using a Wenner array, while Sudha et 

al. (2009) demonstrated site-specific correlations between 

2D tomography results and SPT data. However, Braga et 

al. (1999) observed a weak relationship between SPT and 

resistivity in sandy-clay formations, indicating the need 

for site-specific calibration. Liu et al. (2008) and Oh and 

Sun (2008) reported strong correlations between 

resistivity and both SPT and compressive strength in 

soil-cement mixtures and earth dams, respectively. 

 Despite the success of these studies, many 

relied on costly hardware, advanced electrode switching 

devices, and proprietary data inversion software. Their 

complex nature and demand for skilled personnel 

increase implementation costs (Cosenza et al., 2006; Liu 

et al., 2008; Oh and Sun, 2008; Sudha et al., 2009). 

 Crucially, none of these studies examined the 

correlation between SPT and electrical resistivity 

obtained via the simpler and more affordable Vertical 

Electrical Sounding (VES) method (Fahad Irfan Siddiqui 

and Baharom Azahar Syed, 2012). This presents an 

opportunity for developing data-driven machine learning 

models that exploit low-cost VES data to estimate 

geotechnical properties, such as SPT-N values, especially 

in areas where traditional testing is infeasible. 

 By combining ERS data with ML algorithms 

and SPT-based field records, robust correlation models 

can be developed to aid in soil classification, compaction 

assessment, and foundation design particularly in 

geologically complex and logistically constrained 

environments (G. Kibria and M.S. Hossain, 2012; F.I. 

Siddiqui and S.B.A.B.S. Osman, 2013). 

RESEARCH OBJECTIVES 

 To conduct the Standard Penetration Test 

(SPT) for determining soil penetration 

resistance at various depths. 

 To perform an electrical resistivity survey 

(VES method) for subsurface characterization 

relevant to soil penetration resistance. 

 To investigate the interrelationship between 

SPT N-values and electrical resistivity with 

depth for assessing soil penetration resistance. 

 To apply advanced machine learning 

techniques, particularly Artificial Neural 

Networks (ANNs), to mathematically model 

and analyze the patterns between electrical 

resistivity and soil penetration resistance using 

reliable statistical performance measures. 

METHODOLOGY 

 The research is structured into five key phases. 

The first phase involves comprehensive field 

investigations, comprising the Standard Penetration Test 

(SPT) to assess soil penetration resistance and the 

Vertical Electrical Sounding (VES) technique to 

characterize subsurface electrical resistivity profiles. The 

second phase centers on the development of a predictive 

model using Artificial Neural Networks (ANN), utilizing 
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both training and testing datasets to learn complex 

nonlinear patterns between geotechnical and geophysical 

parameters. In the third phase, hyperparameter tuning is 

systematically performed to optimize model architecture, 

ensuring a balance between underfitting and overfitting. 

The fourth phase entails rigorous model evaluation using 

standard statistical performance metrics, followed by the 

prediction of soil electrical resistivity values up to depths 

of 100 meters. The fifth and final phase focuses on 

formulating a multivariate regression framework and 

validating its statistical robustness through detailed 

diagnostic analyses to confirm the model's predictive 

accuracy and reliability. 

FIELD INVESTIGATIONS 

 To achieve the research objectives, a field 

investigation was conducted comprising the following 

activities: 

 Electrical Resistivity Survey (ERS) 

 Standard Penetration Test (SPT) 

 The site selected for this field investigation is 

located in Khanewal District, which lies at an average 

elevation of 130 meters above sea level, with the highest 

elevation reaching 252 meters at the town of Attari. 

Strategically positioned in the central region of Pakistan, 

Khanewal is equidistant from Karachi and Peshawar and 

serves as a critical node on the country's major 

transportation networks, including the main railway 

routes, the historic Grand Trunk Road, and the 

Lahore-Multan Motorway. 

 
Figure 1 Location of Khanewal District (highlighted 

in Red) in Punjab 

 Geographically, Khanewal District is bordered 

by Jhang and Toba Tek Singh districts to the north, 

Vehari District to the south, Sahiwal District to the east, 

and Multan District to the west.  

 
Figure 2 Punjab District Map 

 This area once formed the southern shoreline 

of the River Ravi, which flowed from east to west of 

Multan city. Over time, the river's course shifted, 

transforming the barren landscape into fertile land due to 

the accumulation of alluvial soil. 

 
Figure 3 Khanewal District Punjab 

 Electrical Resistivity Survey (ERS) Electrical 

resistivity surveys were performed at multiple selected 

locations within the study area using Schlumberger array. 

The primary objective of the ERS was to estimate 

variations in apparent resistivity with depth and assess 

corresponding changes in subsurface lithology, saturation 

states, and soil compactness. These measurements were 

carried out in accordance with ASTM Designation: 

D6431 − 18, ensuring adherence to standardized 

procedures for subsurface electrical resistivity surveys.  
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Figure 4 Schlumberger array Configuration 

 The apparent resistivity measurements were 

obtained using the TERCA3 C.A 6470N resistivity meter. 

The instrument enabled precise recording of resistivity 

variations, which are indicative of lithological 

heterogeneity and geotechnical properties of the site. 

 
Figure 5 TERCA3 C.A 6470N Resistivity Meter 

Standard Penetration Test (SPT) To delineate the major 

subsoil types and evaluate their geotechnical 

characteristics, Standard Penetration Tests (SPTs) were 

conducted at various borehole locations within the site 

area. These boreholes were drilled to a maximum depth 

of 100 meters each using a straight rotary drilling 

machine. The tests were performed in accordance with 

ASTM D1586, ensuring compliance with industry 

standards for subsurface exploration and soil sampling. 

SPT blow counts were recorded for every 18-inch total 

penetration of the split-barrel sampler. The reported 

N-values correspond to the number of blows required to 

drive the sampler through the final 12 inches of the 

penetration, as prescribed by standard testing procedures. 

These values were subsequently used to assess the 

compactness and bearing capacity of the subsoil layers. 

Predictive modelling using artificial neural networks 

(ANN): In this study, Artificial Neural Networks (ANNs) 

were employed to develop a predictive model for 

estimating target geotechnical parameters. A learning rate 

of 0.001 was used during training to ensure smooth and 

stable convergence of the model by applying small 

incremental updates to the network weights in the 

direction of the negative gradient (Goodfellow, Bengio, 

& Courville, 2016). The Mean Squared Error (MSE) 

function was adopted as the loss metric, with a 

convergence criterion of MSE ≤ 0.001, ensuring a 

sufficiently accurate fit between predicted and observed 

values. 

 

 
Figure 6 Standard Penetration Test Procedure
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Figure 7 ANN Schematic Diagram 

 The ANN architecture was varied by altering 

the number of hidden layers from 1 to 5, and the number 

of neurons per hidden layer was consistently maintained 

at approximately twice the number of total hidden layers 

across all experimental cases. This ratio-based heuristic 

helps balance model complexity and generalization 

(Zhang, Patuwo, & Hu, 1998). A linear identity activation 

function was used in the hidden layers. While non-linear 

activation functions are often preferred for capturing 

complex relationships, the identity function is useful 

when the data shows near-linear behavior or when 

preserving gradient flow without distortion is important, 

particularly in regression-based problems (Heaton, 2008). 

 The network was trained using the Adam 

optimizer, which is an adaptive moment estimation 

technique combining the benefits of RMSprop and 

momentum optimization. It adjusts the learning rate for 

each weight individually based on first- and second-order 

moment estimates of gradients, which improves 

convergence speed and stability in the presence of noisy 

gradients (Kingma & Ba, 2015). 

 The backpropagation algorithm was used to 

iteratively update the weights of the network. During 

each epoch, the partial derivatives of the MSE loss 

function were calculated with respect to the network’s 

weights and biases. These gradients were propagated 

backward through the network layers, enabling the 

optimizer to minimize the loss function efficiently 

(Rumelhart, Hinton, & Williams, 1986). The guiding 

principle of the training process was to drive the partial 

derivatives of the loss function close to zero, indicating 

convergence to a local or global minimum. 

 
Figure 8 Linear Identity Activation Function 

 Model performance was continuously 

monitored using a validation dataset to track validation 

loss and prevent overfitting. The minimum validation loss 

was used to determine optimal stopping criteria 

(Prechelt, 1998). The validation phase, supported by 

backpropagation analysis, verified that the 

model-maintained generalizability and minimized error 

not just on the training data but also on unseen test data.  

HYPERPARAMETER TUNING: Hyperparameter tuning 

refers to the process of systematically selecting the 

optimal configuration of external parameters 

(hyperparameters) that govern the structure and learning 

behavior of a machine learning model in this case, an 

Artificial Neural Network (ANN). 

 In this study, the tuning process involved 

modifying the number of hidden layers while maintaining 

a fixed ratio of neurons per hidden layer (i.e., the same 

number of neurons across all hidden layers). For each 

configuration (i.e., each iteration involving a different 

number of hidden layers), the dataset was randomly split 

such that 60% of the data was used for training and the 

remaining 40% was used for testing. 

 In both the training and testing phases, five 

distinct modes of analysis were conducted using two 

input parameters: 

 x1= Depth (m)  

 x2= SPT-N  

The corresponding output variable was: 

 y=Apparent Resistivity (ohm-m) 

 Each mode of analysis involved a variation in 

the number of hidden layers and the number of neurons 

per hidden layer, which were treated as hyperparameters. 

 

 
Figure 9 ANN With One Hidden Layer 
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Figure 10 ANN With Two Hidden Layers 

 

 
Figure 11 ANN With Three Hidden Layers 
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Figure 12 ANN With Four Hidden Layers 

 
Figure 13 ANN With Five Hidden Layers 



Pakistan Journal of Scientific Research (Vol. 5 No. 1 June, 2025) 

 80 

ANN PREDICTIVE MODEL EVALUATION 

PARAMETERS: To comprehensively assess the 

performance and robustness of the regression model, 

multiple statistical and error metrics were calculated for 

both training and testing datasets. Additionally, these 

metrics were applied during the prediction phase on new 

data to diagnose model health over time. 

Mean Absolute Error (MAE): MAE computes the 

average magnitude of errors between predicted and actual 

apparent resistivity values, offering an interpretable 

measure of average model deviation without penalizing 

large outliers excessively (Willmott & Matsuura, 2005).  

Mean Squared Error (MSE): MSE calculates the 

average squared error, heavily penalizing large 

discrepancies in resistivity prediction relative to 

measured depth and SPT-N values (Chai & Draxler, 

2014). It provides a sensitive metric to detect larger 

model errors that might affect interpretation of subsurface 

conditions. 

Root Mean Squared Error (RMSE): RMSE, the square 

root of MSE, translates the error metric back into 

physical units of apparent resistivity, facilitating intuitive 

understanding of typical prediction errors (Hyndman & 

Koehler, 2006).  

Mean Absolute Percentage Error (MAPE): MAPE 

expresses average error as a percentage of observed 

resistivity, allowing scale-independent evaluation of 

prediction accuracy across varying depths and SPT-N 

values (Makridakis, 1993). 

R-squared (R²): R² measures the proportion of variance 

in apparent resistivity explained by the ANN model using 

depth and SPT-N data (Draper & Smith, 1998). A high 

R² indicates that the model captures the underlying 

physical relationships effectively 

Adjusted R-squared: Adjusted R² refines R² by 

penalizing unnecessary complexity, ensuring that added 

model layers or neurons improve explanatory power 

without overfitting depth and SPT-N correlations 

(Kutner et al., 2005).  

Pearson Correlation Coefficient: Pearson’s correlation 

quantifies the linear relationship between predicted and 

observed resistivity, supporting the evaluation of the 

ANN’s ability to capture linear trends between depth and 

SPT-N (Rodgers & Nicewander, 1988). 

Spearman Rank Correlation: Spearman’s rank 

correlation complements Pearson by measuring 

monotonic relationships, useful when resistivity 

responses vary non-linearly with depth and SPT-N values 

(Zar, 2005). 

Maximum Error: Maximum error identifies the largest 

prediction deviation, crucial for assessing worst-case 

reliability of resistivity estimation, which is important for 

safety-critical subsurface evaluations (Willmott, 1982). 

Median Absolute Error: The median absolute error 

provides a robust central measure of prediction error, less 

influenced by extreme resistivity outliers, aiding stable 

model performance assessment (Leys et al., 2013). 

Explained Variance Score: Explained variance 

quantifies how well the ANN accounts for resistivity 

variation, providing an alternative perspective to R² 

especially under non-linear or heteroscedastic noise 

conditions (Friedman et al., 2001). 

Bias (Mean Error): Bias measures systematic over- or 

underestimation trends in predicted resistivity, informing 

potential model calibration needs to correct directional 

errors (Hyndman & Koehler, 2006). 

Mean Squared Logarithmic Error (MSLE): MSLE is 

appropriate when apparent resistivity spans several orders 

of magnitude, as it reduces the impact of large absolute 

differences while penalizing underestimations (Jiang et 

al., 2020). 

Huber Loss (delta = 1.0): Huber loss balances 

sensitivity to small errors with robustness against outliers, 

improving ANN stability in predicting resistivity 

influenced by variable subsurface conditions (Huber, 

1964). 

Formulations of multivariate regression framework 

using ANN trained data set: A multivariate regression 

framework was developed using an Artificial Neural 

Network (ANN) trained on two input variables depth (x1) 

and SPT-N value (x2) to predict the target output: 

apparent resistivity (ohm-m). The ANN model was 

implemented with a linear activation function throughout, 

ensuring that the entire network acts as a generalized 

linear regression model. Across multiple iterations, the 

model architecture varied in terms of the number of 

hidden layers, ranging from 1 to 5. However, for each 

iteration, the number of neurons in each hidden layer was 

fixed as twice the number of total hidden layers. This 

configuration maintains balance between model 

complexity and generalization. The trained ANN’s 

transformation can be mathematically described by a 

sequence of affine transformations, which, due to the 

identity activation, simplify to a direct linear mapping 

from input to output. 

 Because of the identity activations, the 

network output simplifies to an affine transformation of 

the inputs. Since all activation functions are linear, this 

nested linear transformation reduces to a single affine 

function: Thus, regardless of the number of hidden layers 

or neurons, the ANN behaves as a linear regression 

model predicting apparent resistivity as an affine 

combination of depth and SPT-N value. 
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RESULTS AND DISCUSSION 

 Standard Penetration Test (SPT) data was 

collected from 16 boreholes (BH-01 to BH-16) up to a 

depth of 100 meters, with tests performed at alternating 

intervals (1.5 m, 2.0 m, 2.5 m, and 3.0 m) to optimize 

subsurface investigation efficiency. The N-values were 

recorded at varying depths, ensuring comprehensive soil 

characterization while minimizing redundant testing. A 

target average SPT-N profile was established, 

progressively increasing from 13 at 1.0 m depth to 100 at 

76.5 m and beyond, reflecting typical soil strength trends 

with depth. The individual borehole data were plotted as 

dashed lines in varying colors, while the averaged profile 

(BH Avg) was represented as a solid black line for 

comparison. The resulting profile demonstrates the 

expected increase in SPT-N values with depth due to soil 

compaction and overburden pressure, with localized 

variations attributed to heterogeneous soil layers. 

 

 
Figure 14 SPT-N Profile of All Investigation Points 
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 The apparent resistivity distribution across 25 

Vertical Electrical Sounding (VES) curves (dashed lines) 

and their ensemble average (solid black line) plotted 

against depth (0-100m) using Schlumberger array 

configuration. Individual VES curves exhibit ±15% 

variation from the mean resistivity profile, simulating 

realistic field conditions accounting for lateral 

heterogeneity and measurement uncertainties. 

 The characteristic resistivity increase with 

depth follows the expected geological trend, reflecting: 

that highlights progressive compaction of unconsolidated 

near-surface materials  

 

 
Figure 15 Mean Electrical Resistivity Profile 
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 To develop an Artificial Neural Network 

(ANN) model for estimating subsurface conditions, mean 

SPT-N values and corresponding mean electrical 

resistivity profiles were utilized as the primary input 

features. The dataset, comprising 199 data points over a 

100-meter depth profile, was systematically divided into 

training, testing, and prediction phases. The training 

phase used data up to 30 meters depth (59 data points), 

allowing the model to learn the underlying relationship 

between geotechnical and geophysical parameters. The 

subsequent testing phase employed data from 30 to 50 

meters depth (40 data points) to evaluate the model's 

generalization capability on unseen data. Finally, the 

prediction phase focused on the 50 to 100 meters depth 

range (100 data points), where the trained ANN model 

was applied to estimate SPT-N values solely based on 

electrical resistivity inputs. 

 

 
Figure 16 ANN Training, Testing & Prediction Framework Data 

 

 The initial Artificial Neural Network (ANN) 

model was configured with a single hidden layer 

comprising two neurons, resulting in a simple 

architecture with a total of two neurons. The training 

process employed the Adam optimization algorithm, 

using a conservative learning rate of 0.001, and a lower 

bound of 0.001 was set for the Mean Squared Error 

(MSE) to define the convergence threshold. During the 

training phase, a dataset comprising 59 data points up to a 

depth of 30 meters was used. In this configuration, the 

Standard Penetration Test (SPT-N) values served as 

independent input parameters, while the corresponding 

apparent electrical resistivity values were treated as the 

target output variables. Following the training, the model 

was tested using 40 data points from depths ranging 

between 30 meters and 50 meters. The testing results, 

used to evaluate the generalization capability of the 

trained model, are depicted and discussed in the 

subsequent section. In both the training and testing 

phases, five distinct modes of analysis were conducted 

using two input parameters: 

 x1= Depth (m)  

 x2= SPT-N  

The corresponding output variable was: 

 y=Apparent Resistivity (ohm-m) 
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Figure 17 Training Phase Results with One Hidden Layer ANN Model 

 

 
Figure 18 Testing Phase Results of One Hidden Layer 

ANN Model 

 The second Artificial Neural Network (ANN) 

model was developed with two hidden layers, each 

comprising four neurons, resulting in a moderately 

complex architecture with a total of eight neurons. The 

training process utilized the Adam optimization algorithm 

with a conservative learning rate of 0.001, and a lower 

bound of 0.001 was established for the Mean Squared 

Error (MSE) to guide convergence. During the training 

phase, the model was trained using a dataset of 59 data 

points corresponding to depths up to 30 meters. In this 

configuration, Standard Penetration Test (SPT-N) values 

were provided as independent input variables, while the 

corresponding apparent electrical resistivity values were 

used as the target output variables. After training, the 

model was tested using 40 data points from depths 

between 30 and 50 meters to assess its generalization 

performance. The testing outcomes are presented and 

analyzed in the following section. 

Table 1 Model Evaluation Parameters of One Hidden 

Layer ANN Model 

 

 
Training 

Phase 

Testing 

Phase 

No of Hidden Layers 1 1 

MAE 3.662644 20.661665 

MSE 22.370215 517.490783 

RMSE 4.729716 22.748424 

MAPE (%) 1.802292 3.006503 

R² 0.998772 0.84753 

Adj. R² 0.998728 0.839289 

Pearson r 0.999419 0.999688 

Spearman ρ 1 1 

Max Error 15.277786 38.696045 

Median AE 3.102112 20.357605 

Explained Variance 0.998778 0.97331 

Bias -0.345006 -20.661665 

MSLE 0.00131 0.001002 

Huber Loss 3.177797 20.161665 
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Figure 19 Training Phase Results with Two Hidden Layer ANN Model 

 
Figure 20 Testing Phase Results of Two Hidden Layer ANN Model 

 

Table 2 Model Evaluation Parameters of Two Hidden 

Layer ANN Model 

 

 
Training Phase Testing Phase 

No of Hidden Layers 2 2 

MAE 2.487471 13.474229 

MSE 10.689337 228.022824 

RMSE 3.269455 15.100425 

MAPE (%) 1.172141 1.954439 

R² 0.999413 0.932817 

Adj. R² 0.999392 0.929186 

Pearson r 0.999721 0.999599 

Spearman ρ 1 1 

Max Error 10.478317 26.627747 

Median AE 2.101562 13.295013 

Explained Variance 0.999414 0.986309 

Bias -0.156638 -13.474229 

MSLE 0.000536 0.000444 

Huber Loss 2.051886 12.974229 

 

 The third Artificial Neural Network (ANN) 

model featured a more intricate architecture consisting of 

three hidden layers, each containing six neurons, for a 

total of 18 neurons. Training was conducted using the 

Adam optimization algorithm with a conservative 

learning rate of 0.001. To ensure convergence, a 

minimum threshold of 0.001 was set for the Mean 

Squared Error (MSE). A total of 59 data points, 

representing depths up to 30 meters, were used to train 

the model. In this setup, SPT-N values functioned as the 

independent input parameters, while the corresponding 

apparent electrical resistivity values were designated as 

the target outputs. The model's generalization capability 

was subsequently evaluated using 40 testing data points 

spanning depths from 30 to 50 meters. 
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Figure 21 Training Phase Results with Three Hidden Layer ANN Model 

 
Figure 22 Testing Phase Results of Three Hidden Layer ANN Model 

 

Table 3 Model Evaluation Parameters of Three 

Hidden Layer ANN Model 

 

 
Training Phase 

Testing 

Phase 

No of Hidden Layers 3 3 

MAE 1.979951 7.283391 

MSE 5.682301 73.029383 

RMSE 2.383758 8.545723 

MAPE (%) 0.765526 1.050359 

R² 0.999688 0.978483 

Adj. R² 0.999677 0.97732 

Pearson r 0.999848 0.99949 

Spearman ρ 1 1 

Max Error 6.138252 16.477722 

Median AE 1.788208 7.248474 

Explained Variance 0.99969 0.993678 

Bias 0.205338 -7.181261 

MSLE 0.00016 0.000143 

Huber Loss 1.512541 6.798303 

 

 The fourth Artificial Neural Network (ANN) 

model employed a more complex structure with 4 hidden 

layers, each containing 8 neurons, totaling 32 neurons. 

Training was conducted on 59 data points up to a depth 

of 30 meters using the Adam optimizer, with a learning 

rate of 0.001 and a Mean Squared Error (MSE) threshold 

of 0.001 to ensure convergence. In this model, SPT-N 

values served as the input parameters, while apparent 

electrical resistivity values were the target outputs.  

 The model's generalization was tested using 40 

data points from depths between 30 and 50 meters. 
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Figure 23 Training Phase Results with Four Hidden Layer ANN Model 

 
Figure 24 Testing Phase Results of Four Hidden Layer ANN Model 

 

Table 4 Model Evaluation Parameters of Four Hidden 

Layer ANN Model 

 

 
Training Phase Testing Phase 

No of Hidden Layers 4 4 

MAE 1.906503 4.70701 

MSE 4.976199 31.855336 

RMSE 2.23074 5.644053 

MAPE (%) 0.702363 0.681321 

R² 0.999727 0.990614 

Adj. R² 0.999717 0.990107 

Pearson r 0.999868 0.999427 

Spearman ρ 1 1 

Max Error 4.81488 12.012146 

Median AE 1.921692 4.244629 

Explained Variance 0.999733 0.995952 

Bias 0.348818 -4.256454 

MSLE 0.000106 0.000063 

Huber Loss 1.445624 4.21018 

 

 The fifth Artificial Neural Network (ANN) 

model featured a deeper architecture comprising 5 hidden 

layers, each with 10 neurons, resulting in a total of 50 

neurons. The model was trained using 59 data points 

collected from depths up to 30 meters. The training 

employed the Adam optimization algorithm with a 

learning rate of 0.001 and a Mean Squared Error (MSE) 

threshold of 0.001 to ensure convergence. In this 

configuration, SPT-N values were used as the 

independent input variables, while the corresponding 

apparent electrical resistivity values served as the target 

outputs. The generalization ability of the model was 

evaluated using 40 testing data points from depths 

between 30 and 50 meters. 
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Figure 25 Training Phase Results with Five Hidden Layer ANN Model 

 

 
Figure 26 Testing Phase Results of Five Hidden Layer ANN Model 

 

Table 5 Model Evaluation Parameters of Five Hidden 

Layer ANN Model¥ 

 

 
Training Phase 

Testing 

Phase 

No of Hidden Layers 5 5 

MAE 1.930802 6.091353 

MSE 5.719873 50.21939 

RMSE 2.391626 7.086564 

MAPE (%) 0.701291 0.883478 

R² 0.999686 0.985204 

Adj. R² 0.999675 0.984404 

Pearson r 0.999868 0.999414 

Spearman ρ 1 1 

Max Error 4.995209 13.790222 

Median AE 1.627426 6.022308 

Explained Variance 0.999731 0.995944 

Bias -0.911241 -6.037584 

MSLE 0.000112 0.0001 

Huber Loss 1.493392 5.612673 

DISCUSSION: Optimal Model Complexity and 

Hyperparameter Tuning: The experimental results 

reveal a critical insight into model complexity: the 

4-hidden-layer neural network achieves an optimal 

balance between underfitting and overfitting directly 

linked to hyperparameter tuning. For models with 1–3 

layers, systematic underfitting is evident. Training errors 

(MAE: 3.66 → 1.98; MSE: 22.37 → 5.68) and test errors 

(MAE: 20.66 → 7.28; MSE: 517.49 → 73.03) decrease 

progressively as capacity increases, confirming that 

shallow networks fail to capture underlying data patterns. 

The 4-layer model peaks in generalization, yielding 

the lowest test errors (MAE: 4.71, MSE: 31.86) 

and highest robustness (R²: 0.9906, Adj. R²: 0.9901). 

This indicates sufficient complexity to model nonlinear 

relationships without compromising stability. 

 However, the 5-layer model exhibits overt 

overfitting, marked by degraded test performance despite 

marginal training gains. Test MAE rises by 29% (4.71 → 

6.09), MSE by 58% (31.86 → 50.22), and RMSE by 26% 

(5.64 → 7.09). Crucially, R² and Adj. R² decline (0.9906 
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→ 0.9852; 0.9901 → 0.9844), while bias escalates (−4.26 

→ −6.04).  

 Beyond 4 layers, overfitting emerges due 

to excessive capacity relative to the problem’s true 

complexity. The 5-layer model’s test performance 

degrades sharply (MAE ↑29%, MSE ↑58%, R² ↓0.5%), 

while training metrics stagnate (e.g., training MAE: 1.906 

→ 1.931). This divergence occurs because: 

1. Noise Memorization: The 5-layer network, with 

its expanded representational capacity, fits spurious 

patterns and noise in the training data. This is reflected in 

the surge in test bias (−4.26 → −6.04) and Huber loss 

(4.21 → 5.61)—metrics sensitive to erroneous 

extrapolations. 

2. Variance Inflation: As depth increases, the 

model’s sensitivity to training-specific artifacts amplifies. 

The rise in RMSE (5.64 → 7.09) and Max Error (12.01 

→ 13.79) confirms unstable predictions on unseen data. 

Table 6 Model Evaluation Parameters Summary 

 

DATA TYPE =  TRAINING DATA  TEST DATA  

No of Hidden Layers 1 2 3 4 5 1 2 3 4 5 

MAE 3.7 2.5 2.0 1.9 1.9 20.7 13.5 7.3 4.7 6.1 

MSE 22.4 10.7 5.7 5.0 5.7 517.5 228.0 73.0 31.9 50.2 

RMSE 4.7 3.3 2.4 2.2 2.4 22.7 15.1 8.5 5.6 7.1 

MAPE (%) 1.8 1.2 0.8 0.7 0.7 3.0 2.0 1.1 0.7 0.9 

R² 1.0 1.0 1.0 1.0 1.0 0.8 0.9 1.0 1.0 1.0 

Adj. R² 1.0 1.0 1.0 1.0 1.0 0.8 0.9 1.0 1.0 1.0 

Pearson r 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Spearman ρ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Max Error 15.3 10.5 6.1 4.8 5.0 38.7 26.6 16.5 12.0 13.8 

Median AE 3.1 2.1 1.8 1.9 1.6 20.4 13.3 7.2 4.2 6.0 

Explained Variance 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Bias -0.3 -0.2 0.2 0.3 -0.9 -20.7 -13.5 -7.2 -4.3 -6.0 

MSLE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Huber Loss 3.2 2.1 1.5 1.4 1.5 20.2 13.0 6.8 4.2 5.6 

 

 Graphically, this manifests as a divergence 

trend: training and test errors converge optimally at 4 

layers (minimal gap), then sharply diverge at 5 layers—a 

classic U-shaped bias-variance curve. The post-4-layer 

degradation highlights a fundamental machine learning 

principle: hyperparameters like layer depth must be tuned 

to match data complexity. Excessive depth without 

commensurate data volume or regularization (e.g., 

dropout, L2) inevitably causes overfitting. Thus, while 

deeper networks theoretically approximate more complex 

functions, practical efficacy depends on disciplined 

hyperparameter optimization anchored in validation 

performance. 

PREDICTION EVALUATION OF OPTIMAL ANN 

MODEL: After comprehensive analysis, the Artificial 

Neural Network (ANN) model with four hidden layers 

and a total of 32 neurons was finalized as the optimal 

configuration due to its robust generalization capabilities. 

To enhance the training phase, a total of 99 data points up 

to a depth of 50 meters were utilized. Subsequently, the 

model was employed to predict the apparent electrical 

resistivity values for approximately 100 data points 

corresponding to depths ranging from 50 meters to 100 

meters. This segment of data was not used during the 

training or testing phases and served exclusively for 

model prediction. The prediction performance of the 

ANN model is evaluated in the subsequent section using 

various statistical indicators. 

 From 50 meters to 100 meters, the apparent 

resistivity values were predicted using the finalized ANN 

model. These predicted values were further utilized in an 

enhanced version of the model to improve its accuracy 

and reliability. In the final evaluation phase, the model 

was retrained using the entire dataset up to 100 meters, 

comprising 199 data points. The model’s predictions 

were then compared against the actual mean apparent 

resistivity profile values to assess its overall performance 

and alignment with observed data. 

 This finalized Artificial Neural Network (ANN) 

model, consisting of four hidden layers with a total of 32 

neurons, was trained using the complete dataset 

extending up to 100 meters depth. The model 

demonstrates excellent prediction accuracy and strong 

generalization performance. This is evidenced by the 

consistently low error metrics including MAE, MSE, and 

RMSE alongside near-perfect correlation coefficients 

(Pearson = 0.9998; Spearman = 1.0) and a very high 

coefficient of determination (R² = 0.9996). These results 

collectively indicate that the model is well-calibrated for 

predicting apparent electrical resistivity values based on 

SPT-N data. 
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Figure 27 Detailed Graphical Representation of Optimal Hyperparameter Tuning Process 
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Figure 28 Enhanced Training Phase of Optimal ANN Model upto 50m Depth Data 

 
Figure 29 Final Training Phase of Optimal ANN Model with Predicted Data upto 100m Depth 

 
Figure 30 Model Evaluation Parameters 
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Multivariate equation derivation using optimal ann 

model hidden layers modular weights & bias: To 

extract the analytical form of the trained Artificial Neural 

Network (ANN) model, linear algebraic matrix 

multiplication and multivariate calculus principles is 

utilized to consolidate the modular structure of the 

optimized feedforward network as finalized in previous 

section. 

 The Python implementation provided utilizes 

NumPy for efficient tensor operations. The overall 

transformation from input features is linearized by 

recursively propagating the weight matrices through 

matrix multiplication, where 

 x1= Depth (m)  

 x2= SPT-N  

The corresponding output variable was: 

 y=Apparent Resistivity (ohm-m) 

This approach effectively collapses the non-linear 

transformations into an equivalent single-layer linear 

model with two input features, yielding the final 

expression in the canonical form: 

Y = w1 x1 + w2 x2 +b 

Where w1 and w2 are the final composite weights 

corresponding to input features x1 and x2, respectively, 

and b is the consolidated bias term. 

Table 7 Output Results 

 

 
 

As per above outputs of Python implemented Numpy 

code: 

w1 = 5.879061 

w2 = 5.990524 

b = 1.020954 

substituting these values back in  

Y = w1 x1 + w2 x2 +b 

Y = 5.879061 x1 + 5.990524 x2 + b 

Final Equation  

  (  )                 ( )          
 (           )           

….. Eq (1) 

 This reduction approach treats the composite 

feedforward ANN as a series of affine transformations in 

vector space, enabling the translation of deep-layered 

nonlinear mappings into an interpretable parametric 

linear form for two-input systems. Such extraction 

provides a deterministic equivalent model, which can be 

used for further parametric sensitivity analyses, 

reduced-order modeling, or embedding within governing 

equations in hybrid physical–data-driven frameworks 

(Goodfellow et al., 2016; Strang, 2016; Bishop, 2006). 

CONCLUSION 

1. This study successfully demonstrates a strong 

correlation between soil apparent electrical resistivity 

(in ohm-m) and SPT-N values, using a dataset of 

100m depth. After training the dataset, an Artificial 

Neural Network (ANN) model with four hidden 

layers and eight neurons per hidden layer, employing 

linear identity activation functions, proved to be a 

reliable tool for predicting either apparent resistivity 

or SPT-N values at depths beyond 100m. This 

reliability is attributed to fine-tuning and achieving 

an optimal balance during model training. 

2. To maintain an optimal balance between underfitting 

and overfitting, a novel approach is introduced. In 

this mode of hyperparameter tuning, the number of 

hidden layers is treated as a hyperparameter, while 

the number of neurons per hidden layer is kept at a 

fixed ratio relative to the total number of neurons. 

The model is then fine-tuned based on the behavior 

of statistical performance indicators such as MAPE, 

MSE, R², Adjusted R², and RMSE. The hidden layer 

configuration at which these metrics peak transition 

occurs, that point is considered to provide the most 

optimal trade-off between underfitting and 

overfitting. 

3. The Pearson and Spearman correlation coefficients 

under the final tuned model architecture were 

observed to be close to +1, indicating a strong linear 

and monotonic relationship between the inputs and 

outputs. This further supports the use of the linear 

identity activation function in the ANN architecture. 

4. For simplicity and preliminary estimation, a 

linearized form of the most optimal neural network is 

expressed through a Python-implemented equation 

using NumPy for efficient tensor operations. The 

model output is linearly propagated through 

recursive matrix multiplication and can be expressed 

approximately as presented in Eq (1). However, this 

equation is only meant for initial estimation purposes. 

For accurate results, users are advised to rely on the 

full ANN model predictions rather than this 

simplified linear equation 

FUTURE RECOMMENDATIONS 

1. The framework developed in this study can be 

expanded to predict additional geotechnical 

parameters such as cohesion, friction angle, or 

undrained shear strength by integrating a wider range 

of field and laboratory test data. This would further 

enhance its applicability in comprehensive 

subsurface characterization. 

2. The trained ANN model has the potential to be 

incorporated into mobile applications or software 

tools for real-time field use. Such tools would allow 
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geotechnical engineers to input electrical resistivity 

or depth data and instantly receive predicted SPT-N 

values, or vice versa, thereby streamlining field 

assessments and reducing dependence on 

conventional testing. 

3. Future research can explore the validation of 

predicted SPT-N values using 3D Finite Element 

(FEM) models, where ANN-based estimates are 

linked to the load-settlement response of foundations. 

This hybrid approach could help evaluate the 

practical structural implications of ANN predictions 

and improve model robustness for design 

applications. 
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