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Abstract

Spatial transcriptomics enables the study of gene expression within intact tissue architecture,
providing insights into cellular organization and tissue-specific molecular processes. Accurately
identifying spatially variable genes is critical for understanding how gene expression patterns cor-
respond to anatomical structures and functional domains. Here, we present HybridSVG, an ensem-
ble framework that integrates global and local spatial autocorrelation measures to detect genes with
diverse spatial expression patterns. We applied HybridSVG to publicly available mouse brain and
human dorsolateral prefrontal cortex datasets generated using the 10x Genomics Visium platform.
Our results demonstrate that HybridSVG captures both broad tissue-wide gradients and fine-
grained spatial niches with greater precision than existing methods, including SpatialDE, scGCO,
and SPARK-X. Genes identified by HybridSVG show stronger spatial autocorrelation and clearer
local clustering, reflecting biologically meaningful structures such as cortical layers and subcortical
domains. These findings highlight the ability of HybridSVG to robustly identify spatially variable
genes across species and tissue types, providing a versatile tool for the analysis of complex spatial
transcriptomics data.

Keywords: Spatial transcriptomics, spatially variable genes, spatial domain detection, marker
genes, tumor microenvironment.

1. Introduction

Spatial transcriptomics has opened an entirely new way of studying biological tissues by
measuring gene expression while keeping the spatial arrangement of cells intact [1]. Unlike bulk
or single-cell RNA sequencing, which require cells to be dissociated from their native environment,
spatial approaches allow researchers to directly examine how gene activity is organized within tis-
sues [2]. This makes it possible to explore cellular diversity, tissue structure, and localized molec-
ular processes with far greater precision. A key step in this analysis is the detection of spatially
variable genes (SVGs). These genes show expression patterns that are strongly influenced by their
spatial position in the tissue and often highlight important biological gradients, niches, or functional
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domains [3]. Identifying such genes is crucial, as they provide insight into how gene expression
interacts with tissue organization, shedding light on developmental biology, disease progression,
and tissue-specific functions. With the development of high-resolution spatial techniques, research-
ers can now simultaneously map transcripts, proteins, and metabolites within intact tissue contexts.
This has greatly advanced our understanding of complex biological systems, from neural circuits
to tumor microenvironments [4]. However, the richness of these datasets brings new challenges.
The data are often high-dimensional, noisy, and sparse, making it difficult to reliably distinguish
meaningful spatial patterns from random variation [5]. As a result, specialized computational tools
are needed to accurately identify genes whose expression is not only variable but also spatially
structured [6]. Structures or pathological zones, and accurately identifying them is essential for
downstream analysis. Traditional approaches either ignore spatial relationships or rely on hand-
crafted assumptions that don’t generalize well across datasets or platforms.Spatial transcriptomics
has revolutionized our ability to study gene expression within the native tissue context, yet accu-
rately identifying genes with meaningful spatial patterns remains a major computational challenge.
Current methods often fail to capture the full spectrum of spatial heterogeneity, as they typically
prioritize either broad tissue-level trends or localized expression variations, but rarely both. To
overcome this limitation, we developed HybridSVG, an ensemble-based framework that synergis-
tically combines global and local spatial statistics to detect spatially variable genes with greater
biological relevance and statistical robustness. The key contributions of this work are as follows:

e HybridSVG integrates global and local autocorrelation measures in an ensemble
framework, capturing both large-scale gradients and fine-grained spatial niches. This
fusion enables more comprehensive detection of spatially variable genes.

e The method identifies not only simple gradients but also complex and irregular ex-
pression domains that many existing approaches miss. This improves sensitivity to
diverse biological structures across tissues.

e HybridSVG is computationally efficient and adaptable across multiple spatial tran-
scriptomics platforms. Its robustness against noise and sparsity ensures reliable per-
formance on large-scale datasets.

Our approach not only identifies genes with strong spatial structure across diverse tissue types
but also outperforms existing methods in both mouse and human brain datasets, providing a more
reliable tool for uncovering the spatial principles of gene regulation.

2. Materials and Methods

A number of computational strategies have been developed to detect spatially variable genes, each
with its own strengths and weaknesses. Early methods drew from spatial statistics, Gaussian pro-
cesses, and graph-based frameworks to capture the spatial dependence of gene expression [7]. One
widely used tool, SpatialDE, applies Gaussian process regression to separate spatial from non-spa-
tial variation, estimating gene expression covariance based on distances between sampled spots [8].
Another method, SPARK, uses a generalized linear spatial model to capture a variety of spatial
patterns in gene expression, while trendsceek applies Markov processes to test for associations
between gene activity and cell locations [9].

More recent approaches aim to improve scalability and computational efficiency. For instance,
SPARK-X [10] and nnSVG [11] were designed to handle increasingly large datasets without sac-
rificing accuracy, relying on optimized statistical models to speed up computation. Despite these
improvements, challenges remain. Many current methods still struggle to detect more complex spa-
tial structures beyond simple gradients, or they may fail to balance local and global spatial relation-
ships in gene expression. Approaches that rely only on spatial coordinates often miss the influence
of cellular classifications, especially in tissues where expression patterns form irregular or non-
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linear shapes. This highlights the need for more advanced frameworks that can integrate spatial
information with biological complexity to robustly identify genes shaping tissue organization.

In this study, we propose HybridSVG, an ensemble framework designed to detect spatially
variable genes (SVGs) by integrating global and local spatial autocorrelation measures. The meth-
odology leverages the complementary strengths of both
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Figure 1. Overview of the proposed graph-based framework for spatial domain detection in spatial tran-
scriptomics data.

perspectives, global statistics capture overall spatial trends across the tissue, while local statistics
highlight fine-grained neighborhood-specific variations. By fusing these measures, HybridSVG
achieves a balanced and robust characterization of spatial expression patterns, reducing the limita-
tions of relying on a single spatial metric.

3.1. Dataset

HybridSVG was applied to two publicly available spatial transcriptomics datasets. The first was a
coronal section of the mouse brain generated using the 10x Genomics Visium platform[12], which
provides well-characterized spatial layering patterns. The second was the human dorsolateral pre-
frontal cortex (DLPFC) dataset [13] from the spatialLIBD project, consisting of 12 annotated sec-
tions also generated with the 10x Genomics Visium platform. These datasets were chosen to eval-
uate the performance of HybridSVG across species and tissue types, as well as to benchmark
against regions with known biological structures.

3.2 Input and Preprocessing (Quality Control for ST Data)

For each spatial transcriptomics experiment, the input consisted of a genes-by-spots count matrix
X, the spatial coordinates of each spot (xi,yi), and, in some cases, the associated histology image.
Prior to analysis, we applied quality control steps to remove technical artifacts and ensure data
reliability. At the spot level, only spots confidently annotated as lying on tissue by the Visium
pipeline were retained. Spots with low sequencing depth, defined as fewer than 500 unique molec-
ular identifiers (UMIs) or fewer than 200 detected genes, were excluded, along with those showing
elevated mitochondrial transcript fractions greater than 20%, as such spots are typically associated
with low-quality or dying cells. Spatial outliers lying outside the tissue boundaries were also dis-
carded. At the gene level, we filtered out genes expressed in fewer than 3—5% of spots to avoid
statistical instability, and optionally excluded mitochondrial and ribosomal genes if they contrib-
uted disproportionately to variance. Counts were normalized to library size (counts per million or
counts per 10,000) and transformed using log(1+x) to stabilize variance. For datasets involving
multiple tissue sections, batch effects were minimized using ComBat. Unlike pipelines that restrict
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analyses to only highly variable genes, we retained a broader gene set to preserve potentially im-
portant but modestly varying spatial features. The result of this preprocessing was a cleaned and
normalized expression matrix X,which formed the basis for subsequent spatial analyses

3.3 Construction of the Spatial Neighbor Graph

Following preprocessing, we constructed a spatial neighbor network to capture the spatial relation-
ships among spots. Each spot was represented as a node, and edges were defined using a k-nearest
neighbor (kNN) [14,15] approach based on Euclidean distances between spatial coordinates. In this
study, we used k=6, which corresponds to the natural hexagonal neighborhood structure of Visium
platforms. Edge weights were row-standardized so that the sum of weights for each spot equaled
one, thereby ensuring comparability across neighborhoods. This graph structure, denoted as
G=(V,E,W), encoded the local spatial topology of the tissue and served as the foundation for com-
puting spatial autocorrelation statistics.

3.4 Detection of Spatially Variable Genes

To identify genes with significant spatial structure, we evaluated expression profiles using both
global and local spatial autocorrelation statistics in Equation 1. Macro-scale spatial autocorrelation
was assessed using Moran’s I [16], which measures the similarity of expression values across the
entire tissue. For a gene with expression vector x, Moran’s I is defined as

:ﬂZiZjWij(xi_f)(xj_f) 1)

W

where N is the number of spots, wij are spatial weights, and x™ is the mean expression. Positive
values of Moran’s I indicate global clustering of similar expression levels, whereas negative values
indicate spatial dispersion.In parallel, micro-scale spatial autocorrelation was quantified using
Geary’s C [17], which is more sensitive to local differences between neighboring spots.In equation

_ (N =15 %,wi;(x — x/)z )

R TR W e

2, It is defined as:

Values of Geary’s C below 1 indicate positive local autocorrelation (spatial similarity among neigh-
bors), while values above 1 indicate negative autocorrelation, often reflecting local boundaries or
sharp transitions. For both statistics, significance was assessed by permutation testing, where ex-
pression values were randomly permuted across spatial locations 1,000 times to generate null dis-
tributions. Gene-specific p-values were then calculated and adjusted for multiple testing using the
Benjamini—Hochberg procedure. This produced two candidate lists of spatially variable genes: one
derived from Moran’s I and another from Geary’s C.

3.5 Ensemble Framework: HybridSVG

While Moran’s I captures broad global gradients and Geary’s C highlights localized patterns, each
statistic alone is insufficient to fully characterize the complexity of spatial transcriptomics data. To
overcome this limitation, we developed HybridSVG, an ensemble framework [18] that integrates
both measures to detect genes with diverse spatial patterns. Specifically, we combined the p-values
from Moran’s I and Geary’s C using Fisher’s method in equation 3.

X2 ==2(np;+1npe) ~ Xires 3)
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where pl and pC are the respective p-values. The resulting ensemble statistic was corrected for
multiple testing, and genes passing a false discovery rate threshold of 0.05 were designated as Hy-
bridSVGs. This integration strategy ensured that genes supported by either global or local spatial
structure, or both, were robustly identified, enabling the detection of both smooth tissue-wide gra-
dients and fine-grained spatial niches.

3.6 Output and Refinement

To refine the results, we excluded genes with very small effect sizes, such as those with Moran’s |
values close to zero or Geary’s C values near one, even if they achieved nominal statistical signif-
icance. The final output consisted of a curated set of significant HybridSVGs, each annotated with
its corresponding Moran’s I and Geary’s C statistics, adjusted p-values, and effect-size indicators.
These results were visualized using volcano-style plots of significance versus effect size, as well
as spatial heatmaps to confirm expression patterns within tissue sections.

3. Results and Discussion

To assess the performance of HybridSVG, we tested it on a well-characterized mouse brain dataset
from the 10x Genomics Visium platform. This coronal section serves as a strong benchmark because
the anatomical layers and substructures are clearly defined.

As shown in Figure 2A, the model was able to recover the major brain regions with high fidelity. The
segmentation captured not only the layered organization of the cerebral cortex (Cortex 1-5) but also
distinct subcortical domains, including the hippocampus, thalamus, hypothalamus, striatum, lateral
ventricle, and fiber tracts. This demonstrates that HybridSVG can reliably parse the complex spatial
organization of brain tissue based solely on transcriptional variation. In Figure 2B, the heatmap illus-
trates the correspondence between predicted domains and known anatomical compartments, confirm-
ing that the inferred clusters align with established structural boundaries. The strength of this align-
ment underscores the biological relevance of the detected spatial patterns. Figure 2C further quantifies
gene—spatial relationships by plotting expression profiles across tissue distances. The resulting curves
highlight how specific genes peak within defined anatomical regions, reflecting their spatial autocor-
relation and region-specific enrichment.

Figure 2. Application of HybridSVG to a mouse brain Visium dataset reveals spatially variable genes and

distinct anatomical domains.

Finally, Figure 2D presents examples of spatially variable genes identified by the framework (e.g.,
Tmem?72, Col18a2, Abca4, Calml4). These genes exhibit localized enrichment patterns that coincide
with the anatomical segmentation, reinforcing the ability of HybridSVG to detect both well-known
markers and less-characterized candidates. Together, these results show that HybridSVG provides a
coherent and biologically meaningful map of molecular architecture in the mouse brain.
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The second dataset analyzed was the human dorsolateral prefrontal cortex (DLPFC) obtained from
the spatialLIBD project, which contains 12 annotated sections generated using the 10x Genomics
Visium platform. This dataset provided a benchmark to assess the ability of HybridSVG to recover
spatial domains in a complex tissue with well-defined laminar structures. As shown in Figure 3A, the
ground-truth annotation highlights the layered organization of the cortex, including Layers 1-6 and
white matter. Our method successfully reconstructed these cortical domains (Figure 3B), closely
matching the reference annotation and capturing fine-grained spatial boundaries across layers. The
neighborhood enrichment analysis further validated the biological relevance of the inferred domains,
showing strong within-layer enrichment and expected cross-layer interactions (Figure 3C).

Superficial layers (Layers 1-3) show high positive enrichment scores (98.90 to 68.46), indicating
strong spatial clustering within these layers. Middle layers (Layers 4-5) display moderate enrichment
(53.24 t0 39.02), suggesting transitional zones. Deep layers (Layer 6) and white matter (WM) exhibit
lower or negative values (22.80 to -38.08), reflecting their distinct spatial segregation. This pattern
aligns with known neuroanatomical principles, where superficial cortical layers demonstrate more
homogeneous cellular composition compared to deeper layers and white matter tracts. In addition,
HybridSVG identified multiple spatially variable genes

Neighborhood enrichment

Figure 3. Detection of spatially variable genes (SVGs) and layer-specific organization in the human dorso-
lateral prefrontal cortex (DLPFC) dataset from spatialLIBD using HybridSVG.

(SVGs) with distinct laminar expression patterns, including MARCKSL1, PADI2, CAMK2NI,
CLIC4, CLSTN1, VAMP3, HPCA, ATP5F1, NCDN, and STMNI1 (Figure 3D). These genes dis-
played heterogeneous expression across cortical layers and white matter, supporting the robustness of
our framework in detecting biologically meaningful spatial signatures in the DLPFC dataset.
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Figure 4. Violin plots of Moran’s I and Geary’s C for 50 SVGs across methods on the mouse brain (Visium)
dataset, highlighting the superior performance of HybridSVG.

We evaluated our method, HybridSVG, alongside other approaches using Moran’s I and Geary’s C
statistics across 50 genes in the mouse brain (Visium) and human DLPFC (spatialLIBD) datasets
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(Figure A-B). HybridSVG consistently showed the strongest performance, achieving the highest Mo-
ran’s I values, indicating that it captures stronger spatial autocorrelation compared to SpatialDE,
scGCO [19], and SPARK-X. In contrast, the competing methods displayed broader distributions with
lower central values, reflecting weaker spatial signal detection.

For Geary’s C, where lower values denote better performance, HybridSVG again outperformed the
other methods, with distributions concentrated towards the lower range. The other approaches, par-
ticularly SpatialDE and SPARK-X, produced higher Geary’s C values, suggesting noisier spatial pat-
terns and reduced sensitivity in distinguishing structured spatial domains. Together, these results high-
light that HybridSVG is more effective at capturing both global and local spatial dependencies in the
mouse brain (Visium) dataset, making it the most reliable method among those tested.

Moran's 1 Distribution (Top 50 SVGs) Geary's C Distribution (Top 50 SVGs)

-~ Highest Moran's | 0.9 --- Lowest Geary's C
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S ..
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Moran's |

Figure 5. Top 50 SVGs compared across SpatialDE, scGCO, SPARK-X, and HybridSVG, validated by
Moran’s I and Geary’s C

Based on our benchmarking across multiple spatial statistics, HybridSVG consistently outperformed
existing methods on the human DLPFC dataset. The top genes identified by our approach showed
stronger spatial autocorrelation (higher Moran’s I) and clearer local clustering (lower Geary’s C) com-
pared to SpatialDE, scGCO, and SPARK-X. This indicates that HybridSVG captures more biologi-
cally meaningful spatial patterns which is ikely reflecting the known layered organization of human
prefrontal cortex with less noise and greater sensitivity to subtle anatomical structures.The superior
performance of HybridSVG is particularly significant given the complex cytoarchitecture of the hu-
man DLPFC, which contains well-defined six-layer organization with distinct cellular compositions
and gene expression patterns. HybridSVG's ability to identify genes with stronger spatial autocorre-
lation suggests it more effectively captures. The consistent outperformance of HybridSVG across both
statistical metrics indicates its robustness in handling the increased complexity of human brain tissue
compared to rodent models. The broader distributions and reduced central values of competing meth-
ods suggest they struggle with the heightened biological heterogeneity and finer spatial scale of hu-
man cortical organization.

These results demonstrate that HybridSVG is particularly well-suited for analyzing human brain spa-
tial transcriptomics data, providing enhanced detection of spatially variable genes that reflect the in-
tricate organizational principles of human cerebral cortex architecture.

4. Conclusions

In this study, we developed and validated HybridSVG, an ensemble framework for detecting spatially
variable genes in spatial transcriptomics datasets. By combining global and local measures of spatial
autocorrelation, HybridSVG effectively captures complex expression patterns that are not readily de-
tected by existing methods. Our results demonstrate that this integrated approach consistently out-
performs existing methods across multiple benchmarks, capturing both broad organizational gradients
and fine-grained spatial niches in complex tissues. The method's robust performance on both mouse
brain and human DLPFC datasets underscores its versatility and biological relevance, particularly in
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detecting layer-specific gene expression patterns in cortical architecture. The superior statistical per-
formance which evidenced by higher Moran's I and lower Geary's C values that indicates that Hy-
bridSVG identifies genes with stronger and more biologically meaningful spatial patterns. This en-
hanced detection capability provides researchers with more reliable candidates for investigating spa-
tial gene regulation mechanisms. Furthermore, the method's ability to handle the increased complexity
of human brain tissue suggests broad applicability across diverse tissue types and spatial transcriptom-
ics platforms. As spatial technologies continue to evolve, methods like HybridSVG that can extract
meaningful biological signals from complex spatial data will become increasingly valuable. The
framework's success in identifying known anatomical structures and novel spatial patterns highlights
its potential for uncovering new insights into tissue organization, development, and disease pathology.
Future work will focus on extending this approach to incorporate additional data modalities and adapt-
ing it to emerging high-resolution spatial technologies.
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