
Pakistan Journal of Scientific Research 
Multidisciplinary & Peer Reviewed 

Volume: 4, Number: 2(Suppl.), Pages: 92-101, Year:2025  

 
Pak. J. Sci. Res. 2025, 4, 2(Suppl.) https://doi.org/10.57041/1qrdge18 

Article 

MASKYLO: Hybrid Deep Learning Framework for Detection and 
Segmentation of HE Stained Histology Image 
Nimra Bukhari1, Hassan Munir1, Rafique Haider2, Shabir Hussain1,3* 

1 Department of Computer Science, National College of Business Administration and Economics, Rahim Yar Khan, 
64200, Pakistan    

2 Department of Computer Science, Khawaja Fareed University of Engineering & Information Technology, Rahim Yar 
Khan, Punjab, Pakistan 

3 Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, 
Shenzhen 518055, China 

 
* Correspondence: Shabir Hussain (e-mail shabir.nicaas@gmail.com;  shabir.hussain@sz.tsinghua.edu.cn ) 

Submitted: 02-03-2025, Revised: 20-05-2025, Accepted: 23-06-2025 

Abstract 

The analysis of pathology images is a crucial step of modern healthcare that helps in diagnosing 
tumours, determining the grade and type of tumours, planning to treat them and performing surger-
ies. In this study, we present MASKYLO, a novel hybrid deep learning framework that integrates 
YOLOv11 for real-time nuclei detection and using YOLOv8 and Mask R-CNN for precise pixel-
level segmentation. MASKYLO ensures the speed and accuracy of YOLOv11 for detecting regions 
of interest, while the fused segmentation networks refine mask predictions to achieve high spatial 
fidelity. We evaluate our approach on the NuInsSeg dataset, demonstrating superior performance 
compared to existing methods. Our YOLOv11 detection branch achieves a precision of 0.89, a 
recall of 0.85, and an mAP@50 of 0.88, whereas the segmentation branch attains an IoU of 0.82 
and a Dice score of 0.85, surpassing previously reported YOLOv8 and Mask R-CNN benchmarks 
with a 0.96 Dice Score and an IoU on the same dataset. These results highlight MASKYLO’s ability 
to provide accurate, efficient, and reliable detection and segmentation of histopathological images, 
making it a promising tool for automated pathology workflows. 

Keywords: HE image segmentation, hybrid detection-segmentation, medical image analysis, deep 
learning, pixel-level segmentation, histopathology. 
 

1. Introduction 
Digital Pathology [1] plays a dominant role in the diagnosis, prediction and grading of cancer 

disease by providing useful insights into cellular and tissue morphology. Traditionally, this tech-
nique has depended on visual inspection of glass slides under a microscope. But after the develop-
ment of digital pathology, in which tissue slides are converted into ultra-high-resolution, H&E (or 
similar staining) preparations and whole-slide images (WSIs), this signifies a major shift in modern 
diagnostic workflows.  

The primary method is WSI enabled through a hardware framework of robotic components, 
which converts the whole slide into a structured representation of spatial (x, y) and depth (z) pixel 
values. Pathologists can manipulate the digital slide through seamless zooming, panning, and re-
gion tiling across variable magnifications, facilitating histological view and diagnostic evaluation 
in a manner similar to glass-slide practice but augmented by 3D spatial image integrity and 
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navigation speed. In support of image acquisition, advanced image analysis algorithms [2], driven 
by neural nets and machine-learning pipelines, examine digital H&E stacks to segment and quantify 
histological context. Automated algorithms can save and measure nuclei extract quantitative de-
scriptors of cytological architecture and tissue organization, thus minimizing observer-dependent 
variability. In the last decade, H&E image analysis has rapidly grown and is delivering high-end 
solutions for segmentation [3] with the help of deep learning techniques [4]. From fully convolu-
tional neural network [5] to more refined and well-designed architectures for classification [6], 
segmentation [7], detection [8].H&E images are well-suited for computational stain normalization 
and transformation, their rich diagnostic and prognostic value allows AI models to identify fine-
grained spatial and structural features which performs accurate classification, segmentation, and 
detection often without necessitating extra staining protocols. Digital pathology workflows became 
cost-effective and scalable automation of image analysis, which helped to reduce both human and 
laboratory resources. These reasons make H&E images the foundation for AI-driven applications 
[9] in digital pathology [10] and histopathology research. Pathology image analysis can be ad-
dressed at multiple levels, from the nuclear level to the cell level and tissue level features. At the 
cell level, along with their spatial relationships, the nuclei and cytoplasm of cells highlight crucial 
information about tumour type and grade. Moving forward to the tissue scale macroscale features, 
including the spatial arrangement and variations in tumour, provides significant diagnostic and 
prognostic information. Hematoxylin and eosin (H&E) images are the preferred choice for training 
AI models in pathology diagnostics due to their reliability, standardization, and information-rich 
content. 

Model’s contribution 
• We proposed a novel approach that integrates detection and segmentation models 

(YOLOv11, YOLOv8-seg, and Mask R-CNN via Detectron2), where each compo-
nent can be updated or replaced independently without retraining the entire system.  

• The framework combines object detection (YOLOv11) with pixel-level segmenta-
tion (YOLOv8-seg and Mask R-CNN) to resolve overlaps and segment small or 
complex nuclei in histopathology. 

• The framework enables real-world applicability by supporting whole-slide analysis 
through a patching strategy for full-resolution processing. 

• We propose a fusion mechanism combining model outputs through IoU voting or 
confidence weighting, adaptable to varied needs. 

2. Related Work 
The segmentation of medical images assists in marking the boundaries of affected features 

and disease. Image enhancement by focusing on methodologies, different datasets, and exceptional 
results in the analysis of H&E images, deep learning techniques are now considered more suitable 
than microscopic methods. Initial findings in semantic segmentation were introduced by Fully Con-
volutional Networks (FCNs) [11], which improved classification models such as GoogLeNet, 
AlexNet and VGGNet for solid prediction. Building on FCNs, U-Net became the most widely 
adopted architecture in biomedical segmentation [12], introducing skip connections to counteract 
information loss from down-sampling. To address U-Net’s limitations in capturing fine structures 
such as retinal vessels, a Deep Guidance Network (DGN) [13] introduced a guided image filter 
module, enabling superior recovery of curvilinear structures. A deep learning–based interactive 
segmentation framework combined initial CNN outputs with user interactions, modelled through 
geodesic distance transforms [14] and integrated into a resolution-preserving network with Condi-
tional Random Fields (CRFs). Validations on 2D placenta (fetal MRI) and 3D brain tumour 
(FLAIR) datasets. An ovarian cancer segmentation model fine-tuned from a breast cancer model 
[15] achieved an IoU of 0.74, a recall of 0.86, and a precision of 0.84, underscoring the efficiency 
of transfer learning for histopathology. Automated cancer detection in H&E WSIs [16] is chal-
lenged by the giga-pixel scale and scarce annotations. NAS-UNet [17], discovered via neural 
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architecture search, outperformed U-Net variants on MRI, CT, and ultrasound segmentation with 
only 0.8M parameters. Deep learning has advanced image reconstruction, where a GAN-based su-
per-resolution framework with SE-embedded EDSR [18] outperformed SRGAN, EDSR, VDSR, 
and D-DBPN under high upscaling factors. In medical image colorization, a DNN with Y-loss and 
adaptive reference search [19] achieved 24% PSNR and 47% SSIM gains over baselines, producing 
clinically validated, realistic outputs. These advances highlight deep learning’s potential to improve 
diagnostic interpretation through enhanced image quality and color. 

3. Methodology 
This research proposes a hybrid segmentation framework that integrates three state-of-the-art 

models for H&E image detection, YOLOv8 for segmentation, and Mask R-CNN for refinement 
into a combined multi-stage pipeline.  

3.1. Dataset 

In this study we worked on the NuInsSeg [20] dataset which has large-scale collection of fully 
manually annotated nuclei in hematoxylin and eosin (H&E)-stained histopathology images. The 
dataset shown in Fig.A consists of 665 image patches of 512x512 pixels in size, having more than 
30,000 segmented nuclei from 31 human and mouse organs. This dataset is particularly useful for 
estimating robust nuclei segmentation methods. 

 

Figure A: Sample H&E patches with manually segmented nuclei masks from the NuInsSeg dataset 
3.2. Pre-Processing 

All H&E image patches from the NuInsSeg dataset were resized to 512 × 512 pixels to stand-
ardize the input across both models. To address stain variability, color normalization was applied 
prior to training. The nuclei masks were then reformatted YOLO compatible with nuclei boundary 
coordinates for YOLOv8 and COCO-style JSON annotations for Detectron2. The dataset was split 
into training and test sets, confirming a balanced distribution of organs and tissue types in each 
category. 

3.3. Proposed Framework 

The proposed framework is designed to perform robust segmentation of Hematoxylin and 
Eosin (H&E)-stained histopathological images by leveraging both classical and deep learning-
based approaches. The methodology is divided into sequential yet independent stages, starting with 
preprocessing and annotation, followed by segmentation using YOLOv8 and Mask R-CNN, and 
concluding with evaluation using quantitative metrics. The overall flow is structured as shown in 
Fig. B. 
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Figure B: Overview of the proposed MASKYLO framework. YOLOv11 performs real-time detection of re-
gions of interest in H&E-stained histopathology images and YOLOv8 and Mask R-CNN branches for precise 
pixel-level segmentation.  
All images are resized to 512 × 512 pixels for both segmentation models. To enable supervised 
learning, polygon-based annotations are employed for generating ground truth segmentation masks, 
which capture the precise boundaries of nuclei and tissue structures. These annotations are im-
portant for evaluating model performance. For segmentation, we employed two independent pipe-
lines. The first used YOLOv8, a lightweight one-stage detector that performs real-time detection 
and instance segmentation with fast inference and competitive accuracy, making it well-suited for 
large-scale histopathology. The second utilized Detectron2’s Mask R-CNN, a two-stage, region-
based framework that generates proposals and refines them into high-resolution masks. YOLOv8 
emphasizes speed and computational efficiency; Mask R-CNN offers more precise boundary re-
finement. This dual-model strategy highlights real-time feasibility and fine-grained accuracy in 
histopathological segmentation. 
3.4. YOLO v8 Segmentation Architecture 
A detailed architecture of YOLOv8 is shown in Fig. C for classification includes three main com-
ponents: a backbone for feature extraction, a neck for aggregating multi-scale features, and a head 
that outputs class probabilities. This setup efficiently classifies images into correct mask, incorrect 
mask, or no mask categories. 

 
Figure C: Detailed architecture of the YOLOv8 segmentation model for H&E images. 
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1) Input Image Representation 
The Equation.1 An H&E image with height H, width W, and RGB channels and prediction of 
bounding boxes B and segmentation masks M can be shown in Equation. 2: 

 I∈RH×W×3 
𝑌#={(Bi,Ci,Mi)}iN=1 

(1) 
(2) 

where Ci is the predicted class label, Bi bounding box, Mi segmentation mask. 
2) Backbone (Feature Extraction) 
YOLOv8 backbone extracts multi-scale features using C2f modules (an efficient variant of CSP) 
in Equation 3: 

 F=fθ(I)={F1,F2,F3,…,Fk} (3) 
3) Neck (Feature Fusion with FPN/PAN) 
Feature pyramid combines high- and low-level features in Equation 4,5 and 6 using upsampling (↑) 
and downsampling (↓): 

 Fj∗=ϕ(Fj,Fj+1,…,Fk) (4) 
 F∗={F1∗,F2∗,…,Fk∗} 

Fj∗=Conv(Fj+↑(Fj+1)+↓(Fj−1)) 
(5) 
(6) 

 
4) Detection Head and Segmentation Head 
Bounding box regression predicts (x,y,w,h) in Equation 7. Mask is generated using prototype masks 
P and mask coefficients αi in Equation 8 
 

 Bi=(σ(tx)+cx,σ(ty)+cy,etwaw,ethah) 
P∈RHp×Wp×k,αi∈Rk 

(7) 
(8) 

 
3.5. Mask R-CNN model via Detectron2 
For H&E patch segmentation, we employed Detectron2 with a Mask R-CNN (ResNet-50 + FPN) 
pretrained on ImageNet. Whole slide images (WSIs) were tiled into 512 × 512 patches.The seg-
mentation head comprised four 3 × 3 conv layers (256 channels), a deconvolution layer, and sig-
moid activation, whereas the classification branch used two 1024-d fully connected layers. Perfor-
mance was evaluated using precision, recall, mAP@50, mAP@[50–95], Dice, and IoU. A detailed 
configuration is described in Table I. 

 
Figure D. Mask R-CNN configuration in Detectron2 for H&E segmentation, covering backbone, anchors, 
input, training, optimization, and evaluation. 
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Table I: Detailed configuration of the Mask R-CNN model implemented in Detectron2 for H&E image seg-
mentation. The framework leverages a ResNet-50 backbone with FPN. 

4. Results and Discussion 
In task of nuclei detection and segmentation, the Box Branch is responsible solely for predict-

ing nuclei bounding boxes, and its performance is quantified using detection-oriented metrics such 
as precision, recall, and mAP, as observed with YOLOv11 (Precision: 0.89, Recall: 0.85, 
mAP@50: 0.88) and YOLOv8 (Precision: 0.92, Recall: 0.88, mAP@50: 0.91). Pixel-level overlap 
metrics like IoU and Dice are integrally unsuitable to bounding boxes, as they do not capture the 
spatial shape of the tissues. YOLOv11 Mask Branch (IoU: 0.78, Dice: 0.81) and YOLOv8 Mask 
Branch (IoU: 0.82, Dice: 0.85), highlighting superior mask-level performance in H&E image anal-
ysis using YOLOv8 in Table II. 

Table II: Performance evaluation of YOLOv11 and YOLOv8 on box and mask branches.  
Metric YOLOv11  

Box Branch 

YOLOv11    

Mask Branch 

YOLOv8  

Box Branch 

YOLOv8  

Mask Branch  

Precision 0.89 0.86 0.92 0.90 

Recall 0.85 0.83 0.88 0.87 

mAP@50 0.88 0.84 0.91 0.89 

mAP@50–95 0.74 0.70 0.77 0.75 

IoU — 0.78 — 0.82 

Dice — 0.81 — 0.85 

 
 
 
 

Component Configuration 

Framework Detectron2 

Model Mask R-CNN 

Backbone ResNet-50 (pretrained on ImageNet) 

Feature Extractor FPN (Feature Pyramid Network) 

Input Size 512 × 512 (H&E patches, tiled from WSI) 

ROI Pooling RoIAlign (7 × 7) 

Segmentation Head 4 conv layers (3×3), 256 channels each, followed by deconvolution + sigmoid 

Classification Head 2 fully connected layers (1024-d) for bounding box classification + regression 

Optimizer SGD with Momentum (0.9) 

Learning Rate 0.0025 (warmup, step decay schedule) 

Batch Size 16 

Loss Functions - Classification: Cross-Entropy - Box Regression: Smooth L1 - Mask: BCE 

Evaluation  

Metrics 

Precision, Recall, mAP@50, mAP@[50–95], Dice, IoU 
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Table III: Performance metrics of Mask R-CNN on nuclei segmentation and detection tasks. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

The table III presents a detailed comparison of Mask R-CNN performance for nuclei detection and 
segmentation, achieving a Dice coefficient and IoU of 96%. COCO-style metrics, including AP, 
AP50, AP75, and AR@100, highlighting the model’s robust performance in both instance-level 
localization and pixel-level segmentation. Figure E illustrates the performance of the proposed 
MASKYLO framework on H&E-stained test images. Panel (a) shows YOLOv11 bounding boxes, 
highlighting rapid nuclei localization, while panel (b) depicts YOLOv8 segmentation masks with 
refined boundary delineation. Panel (c) presents Mask R-CNN outputs, achieving precise nuclei 
segmentation with clear background separation. 

 
Figure E: Box-level Precision and Recall curves of the YOLOv8 segmentation model plotted over training 
epochs. 

Metric 
Mask R-CNN  

(bbox) 

Mask R-CNN  

(segm) 

Precision 0.66 0.64 

Recall 0.42 0.48 

Dice Coefficient — 0.96 

IoU (Jaccard) — 0.96 

AP (IoU=0.50:0.95) 0.344 0.313 

AP50 0.663 0.635 

AP75 0.330 0.278 

AR@100 0.423 0.384 
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The figure F presents a comparison between the ground truth labels and the model’s predicted labels 
for background and nuclei. The table IV summarizes the comparative performance of YOLOv11, 
YOLOv8, and Mask R-CNN on H&E-stained histopathology images.  
 

 
Figure F: Visualization of true versus predicted labels for background and nuclei.  
Table IV: Comparative performance metrics on different models showing YOLOv11, YOLOv8, Mask R-
CNN remarkable improvement by the proposed MASKYLO framework. 
 
Study Model mAP@50 IoU Dice Precision Recall 

Juhong,.A et al., 2022 [21] SRGAN-ResNeXt 0.86 0.89 0.76 0.83 0.81 

Mostafa et al., 2022 U-net 0.79 0.71 75.5 0.81 0.78 

Our Study (MASKYLO) YOLOv11 Mask Branch 0.88 0.78 0.81 0.86 0.83 

Our Study (MASKYLO) YOLOv8 Mask Branch 0.91 0.82 0.85 0.90 0.87 

       

Our Study (MASKYLO) Mask R-CNN (segm) 0.66 0.96 0.96 0.64 0.48 

 

5. Conclusions 
In this study, we proposed MASKYLO, a hybrid deep learning framework combining 

YOLOv11 for fast nuclei detection with YOLOv8 and Mask R-CNN for precise pixel-level seg-
mentation. Our approach leverages the real-time detection capability of YOLOv11 while refining 
mask predictions through fused segmentation networks, achieving high spatial fidelity. Evaluated 
on the NuInsSeg dataset, MASKYLO demonstrated superior performance, with the detection 
branch achieving a precision of 0.89, a recall of 0.85, and an mAP@50 of 0.88, and the segmenta-
tion branch attaining an IoU and Dice score of 0.96. These results highlight MASKYLO’s effec-
tiveness in delivering accurate, efficient, and reliable detection and segmentation of histopatholog-
ical images, underscoring its potential as a robust tool for automated pathology workflows and 
improved clinical decision-making. 
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