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Abstract

Hyperspectral Imaging (HSI) offers a powerful non-destructive technique for fruit quality evalua-
tion by simultaneously capturing both spatial and spectral information. In this research, apples and
oranges were analyzed using a 224-band visible—near-infrared (400—-1000 nm) imaging system with
a controlled illumination setup and a standardized region-of-interest (ROI) extraction protocol. To
enhance signature quality, preprocessing methods such as Savitzky—Golay smoothing and median
filtering were applied, effectively reducing noise while retaining meaningful spectral characteris-
tics. The dataset comprised 34,394 spectra (224 bands each), including 19,595 fresh and 14,799
spoiled samples. Class balance was preserved during training and testing to avoid bias. Several
supervised learning algorithms—k-nearest neighbors (KNN), support vector machines (SVM), ran-
dom forests (RF), decision trees (DT), linear discriminant analysis (LDA), and logistic regression
(LR)—were employed to classify fruit freshness both within individual species and across a four-
class scenario (apple-fresh, apple-spoiled, orange-fresh, orange-spoiled). Model performance was
assessed using accuracy, precision, recall, and the Fl-score. The top-performing classifiers
achieved nearly 99% accuracy with balanced error rates across all categories. These findings
demonstrate that the integration of HSI with supervised machine learning (ML) provides a reliable
and automated solution for grading apples and oranges. The approach is highly applicable to real-
time sorting lines, supporting improved quality assurance, food safety, and waste reduction. Fur-
thermore, the methodology is adaptable to other agricultural commodities and can be optimized for
industrial deployment through band selection and lightweight models that reduce computational
requirements while maintaining classification accuracy.

Keywords: Artificial intelligence; classification; fruit quality; hyperspectral imaging; machine
learning.

1. Introduction

Global demand for quality fruits has risen in recent years, propelled by growing consumer
understanding of nutrition, food safety, and general health [1]. Fruits are rich in vitamins, fiber, and
antioxidants and are a critical component of human health, such that their quality is a primary focus
for producers, distributors, and consumers [2]. Ensuring consistent fruit quality, however,
particularly at industrial levels, is still a significant challenge [3]. Conventional inspection
techniques, which mainly rely on human vision or rudimentary imaging systems, are subjective,
time-consuming, and unable to detect internal defects like bruising, over-ripeness, or early spoilage
[4]. These shortcomings not only lower efficiency but also result in considerable economic loss as
well as low consumer confidence when poor-quality products are released into the market [5].
Amidst all these challenges, hyperspectral imaging (HSI) has arrived as a formidable, non-invasive
technology, recording spatial information as well as spectral data along hundreds of thin
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wavelength bands [6]. HSI contrasts with ordinary RGB cameras by granting the capacity for
picking up microscopic changes in biochemical composition in the fruits, marking internal quality
determinants such as sugar levels, acidity, and firmness [7]. This high-density spectral information
introduces new opportunities for automated fruit sorting systems that are able to recognize defects
not discernible by human vision [8]. Nevertheless, the intricate nature and elevated dimensionality
of hyperspectral information necessitate the use of complex analysis tools that can derive
worthwhile insights in real time [9]. The comprehensive literature review of fruit quality assurance
is given below:

Hyperspectral Imaging (HSI) combined with ML models has shown significant effectiveness
in fruit disease detection and quality assessment in a related study. Chun et al. [10] used 1D-CNN
and ResNet-50 with HSI (380-1030 nm) to detect Botrytis cinerea in strawberries with 96.86%
accuracy, while Genangeli et al. [11] used ANN-AP and BC models for moldy core detection in
apples (863.38-877.69 nm) with 97% accuracy. SVM-based analysis by Feng et al. [12] identified
bruising in strawberries with 85% accuracy, and Siedliska et al. [13] reached 97% accuracy for
fungal infection detection using BPNN across 705-2239 nm. Gao et al. [14] estimated strawberry
ripeness in the field with 98.6% accuracy using SVM on HSI data (370-1015 nm). Ye et al. [15]
used various models, including CNN and ResNet, to detect pesticide residues in grapes (915-1699
nm) with 93% accuracy. Chu et al. [16] achieved 94.35% accuracy in banana maturity classification
using PLSDA (400-1000 nm), while Pu et al. [17] applied spatial-measured Vis-HSI with k-NN
and PLSDA to classify ripeness (400—740 nm) at 93.3% accuracy. Peach fungal disease classifica-
tion reached 92.5% with SPA-PLSDA in the 400—-1000 nm range [18]. Mango damage evaluation
by Xu et al. [19] using RMSEP in the 900—-1700 nm range showed 77.8% accuracy. Apple bruise
detection with AlexNet-SVM achieved 87.5% accuracy within 400-700 nm [20], and Xu et al. [21]
predicted Kyoho grape shelf-life with 98.125% accuracy using SVM and CNN on HSI data
(400.68-1001.61 nm).

Machine learning (ML) methods, especially supervised methodologies such as Support
Vector Machine (SVM), Random Forest, Decision Tree, K-Nearest Neighbors (KNN), and Logistic
Regression, present a data-oriented solution to the issue [22]. When trained on hyperspectral
datasets with labels, these models are capable of classifying fruits both by their external appearance
and internal structure [23]. In this research, more than 7.7 million spectral data points from apples
and oranges are employed to train and test these algorithms, showing their capability to surpass
conventional methods in speed, accuracy, and consistency [24]. Advanced preprocessing
operations—like denoising, normalization, and dimensionality reduction—are utilized to enhance
model robustness and scalability [25]. The combination of HSI with ML not only makes fruit
sorting systems more accurate but also fits with the worldwide transition toward smart agriculture
and automated food processing [26]. Reduced human error, waste minimization, and providing
safer, better-quality produce assist in larger agendas of food security and sustainability [27][28].

This research contributes to the growing body of evidence that intelligent, technology-driven
solutions are essential for meeting the evolving demands of modern agriculture and delivering safe,
nutritious fruits to markets worldwide. The contribution of this research work is as follows. Created
a high-quality spectral dataset for fresh and spoiled fruits with the Specim FX-10 HSI system, re-
cording 224 spectral bands per sample to capture detailed biochemical and physical alterations due
to spoilage. Used sophisticated data preprocessing methods such as the Median filter, Savitzky-
Golay smoothing, Butterworth filter, Gaussian filter, and Moving Average filter to eliminate noise
and improve the quality of the spectral signal. Applied predictive modeling based on ML algo-
rithms, including LDA, SVM, RF, DT, KNN, and LR, with good classification accuracy on LDA
and SVM and excellent generalization on RF and KNN.

2. Materials and Methods

A fruit sorting and classification system needs to be efficient for the purpose of ensuring the
quality and uniformity of agricultural products. In this study, HSI is combined with supervised ML
algorithms to classify two fruit varieties: Apple and Orange. The research methodology follows
(see Figure 1) structured approach to guarantee accuracy and consistency of classification. A
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collection of fruit samples from local markets was done to capture the full spectrum of fruit varia-
tions in terms of quality, ripeness, and size. A hyperspectral camera (Specim FX10) was used for
the imaging process in a push broom/line scanner system. The spectral data acquired in this system
covers 224 spectral bands in a range of wavelengths 400-1000 nm at a spatial resolution of 445 x
512 pixels. The spectral data were controlled with lighting conditions to minimize external varia-
bility. Highly resolute spatial and spectral information was obtained through scanning each fruit
individually. Assessment of the acquired data was done by means of specialized imaging software
(Lumo Scanner), which stored and processed the data for further analysis.

Image Processing Data Preprocessing
. :
1
. maturity Hyperspectral ‘\ =
. = Camera H —=
* ripeness Lens Lg
Fresh * peel color Halogen Lamp ‘
Fruits . juiciness / Region Of Interest (ROI)
> . : for feature extraction
. B =>" -« size nd White Tile e
s . aC|d|ty Translational l
\, 5 5 Stage
. ; * vitamins | Data Correction |
¢! é * texture O G R
) . fi L ImageResizing | |  SteadyFilter !
Rotten or defected wrnness gt V.Y Medianfilter :
Fruits Hyper Spectral Imaging Camera | Noise Removing _'_)L _AverageFilter |
Machine Learning
______________ | Collected Data set |
| Premium Quality (Grade A) ! Model Evaluation Performance - — ||| | ceemmmmmmem——a
| Bt B S S e B e | Parameters Machine Learning Model for ' Filtered Data into CSV file :
______________ ey Data Training L L
: Standard Quality (Grade B) : - Precision, Recall, : l
_____________ I Overall Accuracy & Kappa | * Convolutional Neural Networks (CNNs)
"' T e T i _I L e e * Support Vector Machines (SVM) —
[ -Bi!or i‘ a:d:ri(ira-de-q- -1 1 + Random Forests Data Splitting
______________ * K-Means Clustering

i \ — it 1 et Rtz
i Rejected (Grade D) I Model Predictions G bt T j_Train ) Test _! L Validation

_____________ * Transfer Learning Models - ==

Figure 1. Working flow diagram of HSI for fruit quality assurance.

HSI provided both spatial and spectral information; reflectance spectra were computed for
each fruit type. High-quality representative data was extracted by performing a careful selection of
Regions of Interest (ROI). Since an HSI image has a unique spectral signature for each pixel, the
mean reflectance spectrum per ROI was determined. Each ROI provided 224 spectral features to
represent the spectral signature for each fruit type. Preprocessing techniques, such as noise reduc-
tion and smoothing, were applied for the purpose of enhancing data quality. Median filtering, Sa-
vitzky-Golay filtering, and steady filtering were addressed in it. Of these filters, the Savitzky-Golay
filter was most effective at reducing noise without loss of spectral integrity. After preprocessing
was done on the dataset, it was split into training (80%) and testing (20%) subsets, in order to ensure
training of the model and its validation were on a balanced format. After obtaining the spectral data,
it was converted to a text or CSV format to be seamlessly integrated with the machine learning
framework. To train classification models of classification, various supervised ML algorithms like
SVM, LR, LDA, RF, DT, and KNN were implemented. To recognize the different fruit types, these
models were trained to recognize them depending on their spectral signature. Evaluation was done
to test the performance of models using accuracy, recall, precision, and F1 score. LDA was found
to be the most successful classifier among all tested, achieving better accuracy and better robustness
across all evaluation metrics. Data has shown that HSI, along with ML techniques, are promising
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means to build an automatic yet scalable fruit sorting and classification system, which has great
significance to modern agriculture and the food industry.

2.1 Dataset Preparation

Apple and orange samples were purchased from local markets in Rahim Yar Khan (Punjab,
Pakistan). To keep the dataset consistent, we defined “fresh” and “spoiled” using straightforward
visual and textural criteria (e.g., firmness, discoloration). Fresh fruit was imaged first using hyper-
spectral imaging (HSI). The same batches were then stored under natural conditions to allow spoil-
age, and we re-imaged them at intervals so the labels reflected the actual stage of deterioration. As
a focused proof of concept, the study was limited to apples and oranges, with comparable numbers
of fresh and spoiled samples for each. All images were acquired with an HSI camera capturing 224
spectral bands across 400—-1000 nm under fixed illumination to minimize variability. We selected
Regions of Interest (ROIs) conservatively in each hyperspectral cube to extract clean, representa-
tive spectra. Each pixel carries its own reflectance signature, allowing fresh and spoiled tissue to
be separated when the spectra are aggregated over the ROI. Figure 2 summarizes the processed
dataset: 7,704,256 spectral values arranged as 224 bands by 34,394 samples. Of these samples,
19,595 are labeled fresh and 14,799 are labeled spoiled, providing substantive coverage for both
fruit types. The full spectral range (400-1000 nm) is retained after preprocessing so that down-
stream models see the informative variation rather than noise. This large corpus was then split into
training and test partitions and used to fit and evaluate standard supervised classifiers. Together,
hyperspectral imaging and machine learning enable accurate, automated grading with clear rele-

vance to agriculture, food safety, and routine quality assurance.
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Figure 2. Predicted class distribution graph.

2.2 HSI Experimental Setup

For this research, the hyperspectral imaging (HSI) system used is Specim FX-10 camera (Specim,
Spectral Imaging Ltd., Oulu, Finland; software version 1.2.0, 2017) fitted with a Schneider
Kreuznach 12 mm Cinegon 1.4/12-0906 C-Mount lens and an integrated line scanner (Lumo Scan-
ner 2017, Specim, Spectral Imaging Ltd.). The experimental setup includes three halogen lamps, a
scanning platform that is mobile to obtain correct positioning and an image capture, and an adjust-
able height camera. The scanner is accessed through a serial communication port with a laptop to
carry out trouble-free data pickup and transfer, and the Lund University Machine Operations soft-
ware (Lumo Scanner) carries out the data processing stream. A computer can be linked with the
camera through the connection provided by the GigE-Vision interface (Pleora Technologies) for
fast communication. The outcome is three types of raw data files from the system: sample data,
dark reference, and white reference. The dark reference 445 frames are obtained by closing the
camera shutter, and the white reference 445 frames are taken using a calibrated white tile. The HSI
system captures hyperspectral data in the form of the 445 x 512 x 224 hypercube and 397-1003
nm spectral range (cutoff wavelengths but in this study, the effective usable range of 400-1000 nm
was applied for analysis, with an average subsampling interval of 2.7 nm. This configuration yields
high-resolution spatial and spectral data for fresh and damaged fruit.



Pak. J. Sci. Res. 2025, 4, 2(Suppl.)

46 of 55

2.3. Spectral Reflectance Calculation

Because the capability to obtain accurate spectral reflectance data with such high spatial and
spectral resolution was a prerequisite for successful classification of fresh and spoiled fruits, hy-
perspectral imaging (HSI) was utilized for this purpose. Calibration was done using a 99.9% white
reflectance white reference tile so that the spectral measurements would be correct. For a fixed
position of the camera (15 cm above the samples), the system ran at a 50 Hz frame rate and 16 ms
exposure. To ensure standardized data collection for all samples, conveyor movement maintained
a conveyor speed of 11.72 mm/s.

Radiance was captured by the hyperspectral sensor and affected by conditions such as lighting,
viewing, and sensor. For correcting radiance values, two targets (white and dark references) were
utilized, and radiance values were corrected through the Empirical Line Method (ELM) to reduce
the effects of shading and background noise to yield spectral reflectance values. The formula to
calculate the spectral reflectance (RR) for every wavelength band is as follows:

Rspecimen - Dref (1)

Wref — Dre f
The recorded radiance of the fruit sample Rgpecimens Drey » 18 the radiance of the dark refer-

Reflectance =

ence, W, , is the radiance of the white reference can be calibrated into reflectance data that forms
a basis to discriminate between fresh and spoiled produce through analysis of spectral signatures
(See Figure 3). This approach is accurate and allows for making food quality assessments and re-
ducing post-harvest losses.
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Figure 3. Processed and non-processed spectral reflectance signature.

2.4 Spectral Analysis for Fresh and Rotten Fruits

Spectral analysis allows for the detection of fruit quality changes through the analysis of dis-
tinctive reflectance patterns associated with characteristics such as ripeness, firmness, and mois-
ture. Raw hyperspectral data, while informative, has sensor noise, lighting noise, and surface vari-
ation noise. For clarity enhancement, filters including Savitzky-Golay, Median, Gaussian, Average,
and Butterworth were used. Butterworth filtering produced the smoothest, most classifiable spectra,
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as evident in Figure 3 illustrates all filters, demonstrating the system's flexibility to dataset-specific
preprocessing requirements. Through noise reduction and the improvement of spectral clarity, these
filtering methods helped greatly enhance the discrimination between quality grades so that machine
learning models could detect better and more significant patterns in the spectral data. The applica-
tion of filtered reflectance also helps reinforce real-time grading systems in industrial settings by
providing data consistency and interpretability. Figure.4(a)and(b) show distinct spectral patterns
for apples and oranges.

Spectral Comparison: Fresh Apple vs Rotten Apple Spectral Comparison: Fresh Orange vs Rotten Orange

)
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Figure 4. Apple and orange fruits' spectral analysis comparison.

2.5. Machine Learning Algorithms

To categorize fresh and spoiled fruits based on HSI data, several machine learning algorithms
were utilized to examine slight spectral differences associated with spoilage. These were LR, LDA,
SVM, KNN, DT, and RF. All models were trained on the complete spectral dataset to identify
minor biochemical and surface changes that indicate fruit spoilage. Of them, LDA was notable for
dimensionality reduction and class separation efficiency, and SVM provided stable boundary defi-
nition among new and spoiled samples. Random Forest and Decision Tree models successfully
projected reflectance changes to spoilage patterns, and KNN showed simplicity with good accu-
racy. Logistic Regression provides consistent performance in classification. In total, these models
offered accurate and effective early spoilage detection tools, which helped promote smarter quality
control and less food waste in the fruit supply chain.

3. Results and Discussion

Fruits are essential for health, but quality control is still challenging on a large scale because
of the limitations of manual inspection. Rotten fruits lead to economic loss and health hazards.
Hyperspectral imaging (400—-1000 nm) was used in this study to non-destructively examine fruit
quality from spatial and spectral information. In contrast to conventional methods, it records both
external and internal characteristics. We used machine learning algorithms (KNN, LDA, LR, RF,
SVM, and DT) to grade fruits into four quality grades. Performance evaluation with metrics such
as accuracy, F1 score, and ROC AUC indicated good performance, validating the method's worth
for intelligent, autonomous fruit grading.

3.1. Classification

The KNN classifier exhibited excellent performance, which is also observed in Figure 5(a)
for fruit quality grading using hyperspectral data, with almost perfect scores for all the performance
metrics. Its precision, recall, F1-score, ROC AUC, and overall accuracy (OA) were all around
100%. Figure 5(b) confusion matrix verifies KNN's accuracy, with most predictions placed cor-
rectly on the diagonal. Class 0, for example, had 2400 correct out of 2400, showing few
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misclassifications in all classes. Figure 6 demonstrates uniformly strong performance in precision,
recall, Fl1-score, ROC AUC, and OA for all four classes, which reflects the model's strength and
capability to generalize well across fruit varieties and quality status. The KNN model showed
nearly perfect accuracy, uniformity across all classes, and no overfitting, and thus is a good option
for real-time fruit quality inspection using hyperspectral imaging.
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Figure 5. KNN model performance evaluation and confusion metric scores.

Per-Class Classification Metrics

Precision
Recall
Fl-score
ROC AUC
oA

104

084

0.6

Scores

0.4+

0.2

0.0 -

Class

Figure 6. KNN Per-Class Classification Metrics.

The LDA model performed well in classifying fruit quality grades with precision, recall, and
F1-scores less than 0.95, ROC AUC greater than 0.97, and an OA close to 0.99, showing high
reliability for all 4 fruit classes. The anticipated class distribution, as depicted in Figure 7(a), closely
resembles the real distribution, with class 0 being the most common, then classes 1 and 2. Small
differences indicate occasional overlap, which is also observed in Figure 7(b), particularly among
mid-sized classes such as class 0 and class. The confusion matrix in Figure 7(b) shows that most of
the predictions were accurate, but in some instances few classes are misclassified. These indicate
possible improvements in differentiating spectrally close quality stages. Figure 8 provides high,
consistent performance for all classes with minor dips in precision and F1-score for a few Classes
corresponding to the results of the confusion matrix. Still, most scores are above 0.90, validating
the strong generalization and predictive potential of the model. LDA was found to be a very good
classifier for hyperspectral signature-based fruit quality grading. Its accuracy and balanced perfor-
mance are very good, and thus recommend it for deployment in real-world applications in real-time
fruit sorting, particularly where simplicity of computation and speed are desired.
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Figure 7. Linear discriminant analysis average metric scores.
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Figure 8. LDA per-class classification metrics score.

In Figure 9(a), the logistic regression model worked very well, with all the metrics—Preci-
sion, Recall, F1-score, ROC AUC, and OA—approaching or higher than 0.99 reflects its good
generalization and efficacy in multi-class fruit classification, as can also be seen in Figure 9(b) of
the Confusion matrix.
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Figure 9. LR performance evaluation score and confusion matrix.

Figure 10 validates the high accuracy of the model, with predictions along the diagonal for
most and very few scattered misclassifications. Class 0, for instance, has 2389 correct predictions,
showing the precision of the model and low inter-class confusion. LR was a strong, high-perfor-
mance classifier with nearly perfect performance for all categories of fruits. It is a good choice due
to its simplicity and accuracy for real-time monitoring of fruit quality based on HSI.
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Figure 10. LR performance per-class classification metrics.

Figure 11 (a) The Decision tree model performed moderately, with a total accuracy of 99%.
Lower precision (0.99) and F1-score (0.99), however, reflect difficulties in making confident and
balanced classification on all fruits. Figure 11(b) confusion matrix reveals large misclassifications,
specifically Class 0 being mixed up with Classes 2 and 3 more than 200 times. Comparable spillo-
vers in Classes 0 and 1 decrease the model's reliability for precise fruit quality grading.
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Figure 11. DT performance evaluation confusion metric scores.
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Figure 12. Decision Tree (DT) per-class classification metrics.

Random Forest classifier, as seen in Figure 13(a), performed incredibly well, and all the principal
metrics—Precision, Recall, F1-Score, ROC AUC, and OA—all converged to near 1.0, clearly in-
dicating its extreme reliability and practically perfect consistency in separating all classes. In Figure
13(b) Confusion matrix refers to strong diagonal dominance and minimum misclassification. To
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clarify, the predictions of 2400 True Class 0 were in a set of 2400 samples, which demonstrates the

model’s stability. In Figure 14, the per-class classification metrics bar chart also illustrates that all

classes had high recall, precision, and F1-score with little deviation, indicating that the model's

performance across all levels of adulteration is consistent.
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Figure 13. RF performance evaluation and confusion matrix results.
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Figure 14. RF classifier per-class classification metrics.
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Support Vector Machine (SVM) model performed outstandingly (Figure 15(a)), with Precision,

Recall, F1-score, ROC, AUC, and Overall Accuracy all being above 0.99, evidence of its accuracy

and stability for challenging tasks. In Figure 15(b) confusion matrix reveals high diagonal values

and little misclassifications, with Class 0 possessing 2392 correct classifications and just 8 misclas-

sified samples, largely into Classes 2 and 3, consistent with other highly performing models.
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In Figure 15(b) confusion matrix reveals high diagonal values and little misclassifications, with

Class 0 possessing 2392 correct classifications and just 8 misclassified samples, largely into Classes

2 and 3, consistent with other highly performing models. In Figure 16, examining the per-class

classification scores, each class attained very close and high scores on all five measures, showing
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that the SVM did not disproportionately favor or ignore any one class. Such balanced performance
is especially useful in multi-class scenarios. Per-class scores were uniformly high the model did
not disproportionately favor any class.

Per-Class Classification Metrics
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BN Fl-score
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Scores
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Figure 14. SVM per-class classification matrix.

4. Discussion

Table 1 presents the contrast of hyperspectral imaging (HSI)-based fruit classification meth-
ods among different studies, showing significant differences in accuracy, spectral range, and ma-
chine learning approaches. Some of the earlier studies have used models like SVM, CNN, ResNet,
PLSDA, and hybrid neural networks on fruits such as strawberries, grapes, bananas, mangoes, ap-
ples, and peaches, with accuracies ranging generally between 77% and 98.6%. The used spectral
ranges vary from the narrow bands, such as 400—740 nm, to wider ones extending to 2239 nm.
Notwithstanding these developments, most of the models exhibited shortcomings in generalizabil-
ity or consistency across quality grades and different fruit types. Conversely, this study illustrates
a considerable improvement by realizing 99.1% classification accuracy for oranges and apples uti-
lizing HSI across the range of 400—1000 nm. This research applied and contrasted a full set of
supervised ML algorithms— KNN, LDA, LR, RF, SVM, and DT. These algorithms were trained
and tested exhaustively on pre-processed hyperspectral data, well reflecting nuanced spectral
changes associated with fruit quality. The outstanding performance of our system not only beats
current benchmarks but also demonstrates the strong synergy between hyperspectral imaging and
strong ML pipelines, setting a new benchmark for accurate, scalable, and non-destructive fruit qual-

ity grading.
Table 1. State-of-the-art comparison with proposed work.
Fruits Technology Techniques Wavelength (nm) Accuracy Ref
strawberry HSI 1D-CNN, ResNet-50 380-1030 nm 96.86% [10]
apple HSI ANN-AP and BC models. 863.38-877.69 nm 97% [11]
strawberry HSI SVM 380-1030 nm 85% [12]
strawberry HSI backpropagation neural network 705-2239 nm [13]
(BNN) model, (TPC), (SSC)
strawberry HSI SVM 370 -1015 nm 98.6% [14]
grapes HSI LR, SVM, RF, CNN, residual 915-1699 nm 93%. [15]
neural network (ResNet)

banana HSI PLSDA model 400-1000 nm 94.35% [16]
banana HSI k-NN, SIMCA, PLSDA 400-740 nm 93.3% [17]




Pak. J. Sci. Res. 2025, 4, 2(Suppl.)

53 of 55

peach

HSI

SPA-PLSDA 400-1000 nm 92.5% 18

mango

HSI

apple

HSI

[18]
RMSEP 900-1700 nm 77.8% [19]
AlexNet-SVM 400-700 nm 87.5% [20]

grapes

HSI

SVM, CNN 400.68-1001.61 nm 98.125 % [21]

Apple, orange

HSI

SVM, KNN, LDA, DT, RF, LR 400-1000 nm 99.1% This work
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5. Conclusions

This research demonstrates that hyperspectral imaging (HSI) combined with supervised ma-
chine learning (ML) provides a robust and non-destructive solution for grading apples and oranges.
Using a 224-band visible-near-infrared system (400—1000 nm) under fixed illumination and stand-
ardized region-of-interest selection, we compiled a dataset of 34,394 spectra and evaluated six
widely used classifiers: k-nearest neighbors (KNN), support vector machines (SVM), random for-
ests (RF), decision trees (DT), linear discriminant analysis (LDA), and logistic regression (LR).
Across four-class classification tasks, the top-performing models achieved close to 99% accuracy,
with balanced performance across categories. These findings highlight the potential of HSI to ena-
ble reliable, automated fruit grading systems that can improve quality control, reduce postharvest
losses, and enhance food safety in industrial processing lines.

Future research will also focus on optimizing feature selection and developing lightweight
model architectures to reduce computational cost, enabling real-time, embedded deployment. Ad-
ditionally, extending the framework to other fruit types and naturally occurring defects will further
strengthen its applicability to large-scale agricultural and food industry operations.
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