

CULTIVATING INNOVATION: AN IN-DEPTH EXPLORATION OF IOT AND AI IN SMART AGRICULTURE

H. Majeed¹, W. Azeem², A. A. Malik³, U. Ahmad^{1,4} and H. Sultan¹

¹Department of Computer Science, Lahore Garrison University, Pakistan

²Department of Software Engineering, Lahore Garrison University, Pakistan

³Department of Forensic and Criminology, Lahore Garrison University, Pakistan

⁴School of Software Technology, Dalian University of Technology, China

Corresponding author's email: humayunmao2@gmail.com

ABSTRACT: The integration of smart agriculture technologies, especially through the Internet of Things (IoT), machine learning (ML), and artificial intelligence (AI), has significantly transformed modern agriculture. Smart agriculture has enabled precision farming by optimizing irrigation, monitoring soil health, predicting yields, and efficiently managing resources. This article discusses recent advances in smart agriculture technologies, especially in rice production and drought forecasting. A systematic analysis of 08 research papers highlights the role of communication systems, predictive analytics, and deep learning in optimizing agricultural productivity. Results indicate that there are significant gaps in the assessment of socio-economic impacts, real-world field validation, and integration of multifunctional smart agriculture technologies. Furthermore, challenges such as high implementation costs, lack of farmer training, and limited access to the technology hinder widespread adoption. The paper concludes with recommendations for future research to improve the sustainability, efficiency, and adoption of smart agriculture worldwide.

Keywords: Internet of Things (IoT), Machine Learning (ML), Artificial Intelligence (AI), Wireless Sensor and Actuator Networks (WSAN), Global Positioning System (GPS), Wireless Sensor Networks (WSN), Big Data Analytics (BDA).

(Received

14.07.2024

Accepted 01.09.2024)

INTRODUCTION

Agriculture has been the foundation of human civilization for thousands of years, providing food, raw materials, and employment to many of the world's population. Agriculture plays a key role in global food security, rural employment, and economic development. According to the Food and Agriculture Organization (FAO), the agricultural sector supports the livelihoods of more than 27% of the world's workforce and contributes significantly to the GDP of many developing countries. However, population growth, climate change, depletion of natural resources, and increasing demand for food pose significant challenges to the global agricultural system. With the world population expected to grow to 9.7 billion by 2050, food production will need to increase by at least 70% to meet the growing demand [1]. Traditional farming methods alone may not be enough to achieve this goal. This is where smart agriculture technologies come into play, offering innovative solutions to maximize yields, reduce waste, and ensure sustainability. Currently, agriculture is in the midst of a technological transformation known as smart agriculture, which integrates advanced technologies such as the Internet of Things (IoT), artificial intelligence (AI), machine

learning (ML), big data analytics, drones, robotics, and blockchain into traditional agricultural practices. These innovations help farmers make data-driven decisions, optimize resource use, and increase overall productivity and sustainability.

Importance of Agriculture in the Global Economy: Agriculture plays a key role in global food security, rural employment, and economic development [2]. According to the Food and Agriculture Organization (FAO), the agricultural sector supports the livelihoods of more than 27% of the world's workforce and contributes significantly to the GDP of many developing countries [3]. However, population growth, climate change, depletion of natural resources, and increasing demand for food pose significant challenges to the global agricultural system [2]. With the world population expected to grow to 9.7 billion by 2050, food production will need to increase by at least 70% to meet the growing demand [4]. Traditional farming methods alone may not be enough to achieve this goal. This is where smart agriculture technologies come into play, offering innovative solutions to maximize yields, reduce waste, and ensure sustainability [5–7].

The Development of Smart Agriculture: Smart agriculture is an advanced agricultural approach that uses cutting-edge technology to monitor, automate, and

optimize agricultural activities [8]. The concept evolved from precision agriculture (PA), which emerged in the 1980s with the use of GPS-based tracking and remote sensing technologies [9]. Over the years, rapid advances in sensors, cloud computing, AI-powered analytics, and wireless communications have enabled farmers to collect real-time data and make informed decisions. [10].

Key technologies for smart agriculture: Smart agriculture integrates diverse superior technology to beautify efficiency, optimize useful resource utilization, and make certain sustainability [11]. These technologies permit real-time monitoring, automation, and predictive decision-making, assisting farmers to lessen waste and enhance productivity. [2, 11, 12]

1. Internet of Things (IoT):

IoT performs an essential

position in clever agriculture with the aid of connecting diverse sensors, devices, and automation structures to a centralized network [13]. IoT—primarily based total sensors accumulate real-time information on soil moisture, temperature, humidity, and crop health, allowing unique irrigation and fertilization. This real-time information allows farmers to make knowledgeable decisions, decreasing water intake with the aid of using as much as 40% even as enhancing crop yield. IoT additionally helps far-off farm monitoring, permitting farmers to song environmental situations via cellular packages and cloud platforms. Smart irrigation structures, automatic greenhouses, and cattle monitoring structures depend closely on IoT for seamless operation, as shown in Figure 1. [2].

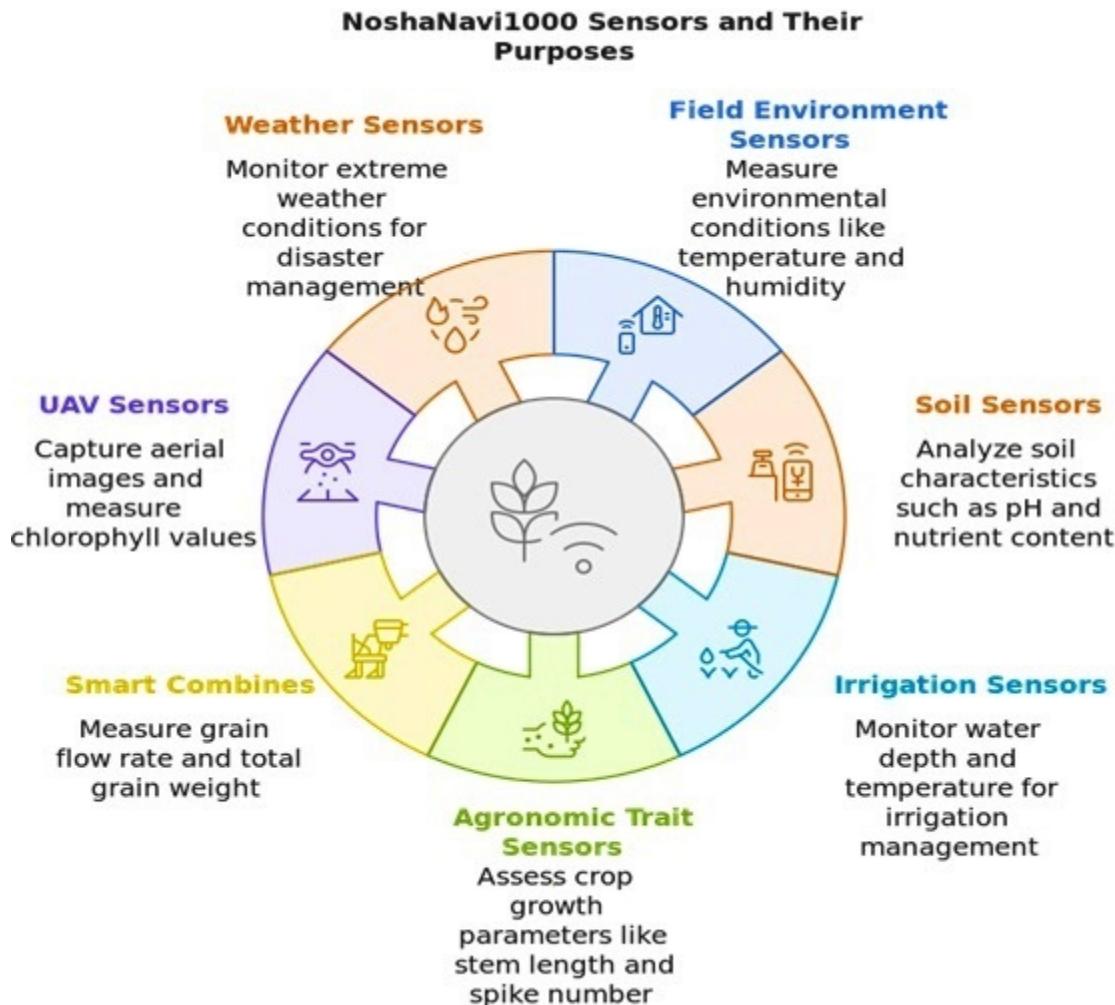


Figure 1: IoT Sensors used in Smart Agriculture

Figure 1 shows the importance of IoT sensors in different weather challenges and their roles in adapting smart agriculture farming.

2. Artificial Intelligence and Machine Learning:

AI and ML considerably enhance decision-making and automation in farming. AI-pushed fashions method

massive datasets to perceive styles and make correct predictions on yield estimation, sickness detection, and pest control. Machine-gaining knowledge of algorithms examines historical climate data, soil conditions, and crop fitness signs to advise superior farming strategies [14]. For example, AI-powered laptop imaginative and prescient generation can locate early symptoms and symptoms of plant diseases, permitting well-timed intervention and decreasing pesticide use via way of means of as much as 30%. Moreover, ML fashions assist in optimizing aid distribution, making sure green water and fertilizer utility is primarily based totally on real-time soil analysis. [3].

3. Big Data Analytics: With the advent of smart agriculture, vast amounts of data are generated from IoT sensors, satellite imagery, and historical records. Big data analytics helps process and interpret this data, providing valuable insights to farmers. Farmers can use predictive analytics to determine optimal planting times, identify seasonal trends, and efficiently manage their supply chains. By analyzing soil health, weather patterns, and crop growth conditions, big data improves precision agriculture, reducing resource waste and maximizing yields. [9].

4. Drones and Robotics: Drones and agricultural robots are transforming traditional agriculture by automating labor-intensive tasks such as pesticide spraying, crop monitoring, and aerial mapping. Drones equipped with multispectral cameras can detect nutrient deficiencies, identify pest infestation, and assess plant growth with high accuracy. Robotic systems are used to automate planting, weeding, g, and harvesting, reducing labor costs and increasing efficiency. [8].

5. Blockchain Technology: Blockchain is revolutionizing agricultural supply chains by ensuring data transparency, traceability, and security. It allows farmers to track product authenticity, monitor transactions, and prevent fraud. Smart contracts enable secure, automated transactions between farmers and buyers, reducing delays and ensuring fair prices. Additionally, blockchain improves food traceability, allowing consumers to verify the origin and quality of agricultural products. [4].

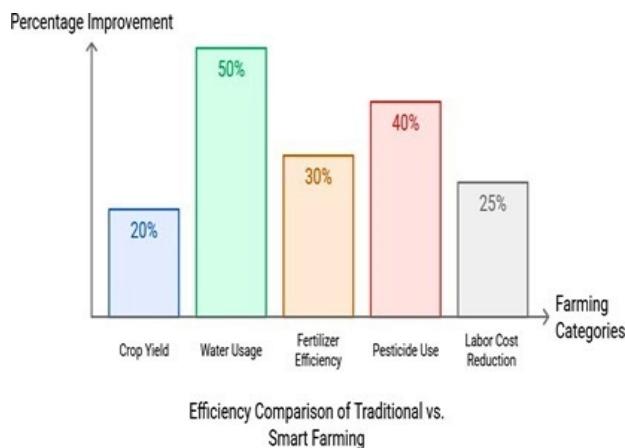
Challenges in Traditional Farming Methods Despite technological advancements, many areas nevertheless depend on conventional farming techniques, which include numerous limitations

- Inefficient Resource Utilization:** Conventional farming methods often use excessive amounts of water, fertilizers, and pesticides, damaging the environment. Without precision agriculture techniques, water waste can exceed 50%, depleting natural resources and increasing costs. Similarly, excessive use of fertilizers

leads to soil degradation and water pollution, affecting both crop yields and ecosystem balance [15].

- Unpredictable Weather Conditions:** Climate change is making weather patterns increasingly unpredictable, with droughts, floods, and extreme temperatures becoming more frequent. Such unpredictable conditions make it difficult for farmers to effectively plan planting and harvesting cycles. In rain-fed agriculture without irrigation infrastructure, crop losses due to erratic rainfall can reach up to 40%. Smart agriculture technologies, such as AI-powered weather forecasting, can help mitigate these risks [16].

- Lack of Real-Time Data:** Traditional agriculture is based on manual observation and historical knowledge that is often inaccurate or outdated. Farmers make decisions based on trial and error rather than real-time data, resulting in suboptimal irrigation, fertilization, and pest control. The lack of sensor-based monitoring systems leads to inefficient farm management, increased operational costs, and reduced productivity [17].


- Post-Harvest Losses:** Inefficient storage, poor logistics, and lack of access to markets contribute to huge post-harvest losses, especially in developing countries. Studies suggest that 30-40% of harvested crops are wasted due to improper handling, insufficient refrigeration, and logistics delays. Intelligent warehousing solutions and blockchain-based supply chain management can help minimize these losses [18].

- Labor Shortages:** The agricultural labor force is shrinking as younger generations migrate to cities in search of better employment opportunities. This labor shortage is particularly acute in manual tasks such as planting, weeding, and harvesting. Automation and robotics offer a possible solution, but high upfront costs make them difficult for small farmers to adopt [19].

The Need for Smart Farming: With the world's population expected to reach 9.7 billion by 2050, ensuring food security has become an urgent issue. Traditional farming methods are hardly able to meet the growing demand due to inefficient use of resources, climate change, and labor shortages. Smart agriculture offers data-driven, automated, and AI-enabled solutions that improve productivity, reduce costs, and promote sustainable agriculture, as shown in Figure 2. These advanced technologies enable precision irrigation, Albased pest control, real-time soil monitoring, and climate adaptation, helping farmers make informed decisions and maximize yields.

- Higher Crop Yields:** One of the number one motives for adopting clever farming is its potential to boost agricultural productivity. By the usage of AI-pushed predictive analytics and IoT-primarily based total soil

monitoring, farmers can optimize crop boom conditions, making sure of better yields with fewer resources. Studies display that precision agriculture strategies can enhance crop yields via way of means of 25-30%, which is vital in addressing international meal shortages. Additionally, computerized greenhouse structures permit year-spherical cultivation of crops, decreasing seasonal dependencies and growing ordinary meal production.

Figure 2: Comparative Bar Chart Figure 2 represents the comparative analysis of traditional and Smart farming, which defines the importance of adopting Smart farming in the future to overcome the old traditional issues by using the advancement of technology.

- Sustainable Resource Management:** Traditional farming methods often result in excessive use of water, fertilizers, and pesticides, damaging the environment. Smart agriculture integrates IoT sensors and AI-enabled decision-making tools to use resources efficiently. Precision irrigation systems help reduce water wastage by up to 40%, while AI-based fertilization optimization ensures plants are nutrient-rich without depleting the soil. This minimizes pollution, improves soil health, and preserves biodiversity, contributing to the long-term sustainability of agriculture.

- Climate Resilience:** Climate alternate has drastically impacted international agriculture, with growing temperatures, abnormal rainfall, and common droughts lowering crop productivity. Smart farming technology assists in mitigating weather dangers through imparting real-time weather monitoring, AI-pushed climate predictions, and automatic edition strategies. Machine studying algorithms examine climate statistics to expect excessive conditions, permitting farmers to alter irrigation schedules, optimize planting cycles, and put into effect protective measures against warmth strain and flooding. This

complements resilience, making sure that farming operations can adapt to converting environmental conditions.

- Cost Reduction:** Labor shortages and rising input costs pose major challenges for farmers. Automating farming tasks using robots, AI driven machinery, and drone technology can significantly reduce reliance on manual labor. Automation systems can plant, water, and harvest crops with high accuracy, reducing labor costs by up to 30%. Additionally, AI-based pest detection systems can prevent crop damage by detecting pest infestations early, reducing pesticide costs, and improving overall farm profitability.

- Improved Supply Chain Management:** In many regions, 30-40% of food is wasted before it reaches the consumer due to inefficient supply chain management. Smart agriculture improves supply chain efficiency by using blockchain and IoT-based monitoring systems to track crops from farm to market. This ensures food traceability, improves logistics management, and minimizes spoilage. Farmers also benefit from smart contract systems that allow them to sell directly to retailers, ensuring fair prices and reducing exploitation by middlemen.

- Global Adoption of Smart Agriculture:** Countries such as Japan, the United States, China, and the Netherlands are leading the adoption of AI-powered greenhouses, automated tractors, and smart irrigation systems. The European Union (EU) has also launched an initiative to promote digital and precision agriculture as part of the Common Agricultural Policy (CAP) [5, 20]. Meanwhile, developing countries such as India and Brazil are gradually integrating IoT and AI-based solutions to modernize agricultural practices.

According to Markets and Markets, the global smart agriculture market is expected to expand from \$12.4 billion in 2022 to \$34.1 billion by 2027, growing at a compound annual growth rate of 22.1% [9]. This growth highlights the increasing reliance on automation, robotics, and data-driven decision-making in agriculture.

Smart agriculture is the future of agriculture, offering an efficient, sustainable, and scalable solution to meet the food demand of a growing population. Integrating IoT, AI, ML, robotics, and blockchain can help farmers increase productivity, reduce waste, and promote environmental sustainability. However, overcoming challenges such as high implementation costs, digital skills gaps, and infrastructure constraints is key to the widespread adoption of smart agriculture technologies [3]. Governments, researchers, and agricultural stakeholders need to work together to develop affordable and accessible solutions so that technology-enabled agriculture can benefit farmers around the world.

LITERATURE REVIEW

Overview of Previous Research: Previous research on smart agriculture has mainly focused on technological advancements, data driven decision-making, and the application of AI in agriculture. Research has highlighted the importance of integrating IoT and AI to increase efficiency and productivity [3].

A study conducted by the International Journal of Agricultural Technology found that farms that implemented smart agriculture technologies saw an average increase in yields of 15% and an additional reduction in resource waste of 20% [5].

Classification of Existing Studies: Research on IoT-based smart agriculture is being conducted across a range of disciplines, focusing on precision agriculture, automation, climate adaptation, supply chain management, and sustainability. These studies can be broadly categorized into three main categories based on their approach, technological focus, and scope of implementation.

Research on IoT in Precision Agriculture: Many studies focus on precision agriculture, using IoT to monitor, analyze, and optimize agricultural processes. These studies highlight the role of wireless sensor networks (WSN), smart irrigation, AI-driven decision-making, and big data analytics in improving efficiency and productivity. Key findings from these studies include:

- IoT-enabled soil moisture monitoring has reduced water consumption by 30-40% and increased crop yields by up to 25%.
- AI-controlled pest control systems reduce pesticide use by 30-50%, protecting crops while minimizing environmental impact.
- NDVI-based imaging techniques detect plant diseases up to two weeks before visible symptoms appear, enabling early intervention.

Most research in this category focuses on integrating AI, ML, and IoT sensors to enable real-time data collection and analysis to ensure accurate and efficient agricultural practices.

Studies on IoT and Automation in Agriculture: Another key research area specializes in automation and robotics in agriculture, wherein IoT is used to automate farm processes, lowering labor dependency and enhancing performance. Research in this field has explored:

- Autonomous irrigation systems that regulate water flow based on real-time soil moisture data, enhancing water efficiency.
- Drones equipped with multispectral imaging

that monitor crop health, identify nutrient deficiencies and detect pest infestations.

- Automated tractors and robotic weeders that use IoT-based navigation and AI-driven decision-making to reduce human labor and enhance precision.

These studies have demonstrated that automated farm machinery can increase efficiency by 40% while reducing operational costs by up to 30%, making them particularly beneficial in regions with labor shortages.

Studies on IoT for Climate Resilience and Sustainability: Climate change has made farming more unpredictable, and many studies have focused on using IoT to build climate-resilient agricultural systems. These research works explore the following.

- AI-powered weather forecasting models that predict droughts, floods, and extreme weather events to help farmers take preventive measures.

- IoT-driven smart greenhouses that automatically adjust temperature, humidity, and CO₂ levels, optimizing growing conditions for crops.

- Block chain based supply chain tracking that ensures transparency reduces food wastage, and enhances traceability.

Findings indicate that climate-smart IoT applications can help reduce yield losses by 20-30% and increase sustainability by optimizing resource utilization and reducing carbon footprint.

Key Findings and Research Trends

- AI-push predictive analytics have proven promising effects in yield estimation and drought prediction.

- IoT-enabled gadgets have progressed in real-time tracking and useful resource optimization.

- Smart irrigation structures have notably decreased water wastage and progressed crop health.

Gaps in the Literature: Although IoT-based smart agriculture shows great potential, there are still some important gaps in the literature. A major challenge is the lack of large-scale field trials to validate the effectiveness of AI and IoT-enabled agricultural models under real-world conditions. Most studies focus on controlled environments, and their applicability to regions with different climates, small farms, and developing countries has not yet been fully explored.

Another gap is the lack of standardization for IoT-based agricultural equipment. Many systems use proprietary communication protocols, making it difficult to integrate data from different devices and platforms. This limits scalability and interoperability and calls for future research to develop universal protocols for seamless device communication.

Table 1: Comparative Analysis of IoT Based Farming Based upon their working Principle

Sr No	Author(s)	Objective	Technique	Dataset	Result	Research Gap	Comments
1	Dongpo Li <i>et al</i> [5].	To systematically literature review Smart agriculture concepts, technologies, and studies applications in Japanese rice farming	Literature review, empirical analysis (DEA, ANOVA), case	Data from large scale rice farms in Japan	7% increase in yield, reduced production costs	Need For comparative studies across different crops and Advancements in socio-economic analysis.	Comprehensive Overview of smart Agriculture in Japan.
2	Nur Badriyah <i>et al</i> [4].	Explore smart farming adoption using semi structured interviews among paddy farmers in Malaysia to improve food security.	Qualitative Study	Farmer responses based on familiarity with smart farming	Identified key technologies, emphasized financial knowledge	Lack of awareness regarding economic benefits and financial support.	Emphasize the need for comprehensive training and economic support strategies.
3	Norhashila Hashim <i>et al</i> [3].	Investigate smart farming challenges, and prospects for rice farming.	AI, IoT, cloud computing, big data	Yield estimation from remote sensing	High classification accuracy for rice quality prediction	Need for robust algorithms and extensive time series data.	Strong integration of technological advancements for sustainable rice production.
4	A.P. At-maja <i>et al</i> [2].	Establish a communication system for Smart Agriculture using WSN	WSN for data collection via Raspberry Pi	Real-time soil moisture sensor data	100% success in data transmission and irrigation control	Need for a unified data transmission system integrating multiple smart control	Highlights successful IoT integration; future work on scalability and energy efficiency is needed.
5	Nermeen Gamal Rezk <i>et al</i> [8].	Develop WPART-based ML method for crop productivity and drought prediction.	Wrapper feature selection, PART classifier	Five IoT based datasets	WPART achieved up to 92.51% accuracy	Need for time series analysis to enhance predictive accuracy.	Demonstrates advancements in low-cost, sustainable ML for agriculture.
6	R. Manikandan <i>et al</i> [9]	Develop an IoT based smart agriculture model for automated irrigation management.	Fuzzy logic controller, ML techniques	Sensor data from temperature, humidity, moisture, UV, and light sensors	Achieved 94.5% accuracy in water optimization to reduce computational costs.	Need for optimization to reduce computational costs.	Strong foundation for smart agriculture with IoT integration.
7	Mandapuram <i>et al</i> [21]	To investigate the impact of IoT sensors for data collection and AI technologies for enhancing agricultural efficiency and sustainability.	Utilization of IoT sensors for data collection and AI measuring soil moisture and weather conditions across different farms over one growing season.	Data from IoT sensors and AI measuring soil moisture and weather conditions across different farms on the cost of the cost.	Achieved a 30% increase in crop yield and a 20% reduction in water usage thro these technologies.	Lack of studies on the cost effectiveness of implementing these technologies in small scale farming.	The findings are promising; however, there's a need for additional research on scalability in diverse agricultural settings.

In addition, high implementation costs also pose a challenge, especially for smallholder farmers.

While studies have highlighted the technical advantages of IoT, fewer studies have focused on economic feasibility,

cost-benefit analysis, and financial support mechanisms such as government subsidies or low-cost sensor alternatives.

Data security and data protection are also less-explored areas. As IoT-based smart agriculture relies on cloud storage, ensuring secure data transfer and protection from cyber threats is critical. Research should focus on blockchain-based security solutions and privacy-conscious data exchange models.

Finally, farmer training and digital literacy remain major barriers to adoption. Many farmers, especially those in rural areas, lack the technical skills necessary to use IoT-enabled agricultural equipment. To bridge this gap, future efforts should focus on user-friendly interfaces, training programs, and mobile-based advisory services.

Closing these gaps will make smart agriculture more practical, cost-effective, and widely adopted, leading to sustainable and efficient agricultural practices.

Sara's work to improve the efficiency of quantum algorithms in data encryption shows significant innovation by using quantum algorithms to improve encryption efficiency. This work improves the theoretical foundations of quantum cryptography and promises high long-term impacts in a variety of sectors that require robust data security. However, implementations may require extended quantum hardware and specialized expertise, making practicality limited. In contrast, Ahmed's project focuses on building quantitative safety cloud storage solutions, particularly for small and medium-sized businesses. His approach is surprising for user-friendly and scalable designs, which is very relevant and latest given the growing demand for supply-of-quantity solutions in the market. Nevertheless, integration can be technical complexity, and initial furniture costs can be a barrier to the adoption of many small business assumptions.

Comparing the two projects, Ahmed's work is likely to apply to current market needs, and Sarah's research contributes to valuable theoretical knowledge in the future. Both projects show innovation, but aim to a variety of target groups. Sarah is directed at large organizations that can invest in research and development, while Ahmed focuses on small and medium-sized businesses for practical solutions. Future efforts could potentially integrate Sarah's efficient algorithm into the Ahmed Cloud model, improving both theoretical and practical aspects. Furthermore, prioritizing hardware development becomes extremely important to bridge the gap between theoretical quantum algorithms and their practical applications, but by investigating costs to reduce costs, quantum technology can be used effectively. Overall, both projects promote areas of volume, albeit with varying etiquette, which clearly contributes to the developing

situation of data protection.

METHODOLOGY AND FRAMEWORK:

Approach Taken: This review follows a systematic literature review approach to analyze existing research on smart agriculture technologies. The research methodology includes a review of academic papers, case studies, and experimental data from various sources. The systematic approach ensures that the results are reliable, comparable, and validated in different regions and agricultural environments.

Databases and Keywords Used: Research findings were compiled from Scopus, IEEE Xplore, Science Direct, and Google Scholar using keywords such as "smart agriculture," "IoT in agriculture," "AI-based precision agriculture," and "machine learning in agriculture." The selection focused on peer-reviewed journal articles, conference proceedings, and government reports published in the past decade.

Inclusion and Exclusion Criteria

- Inclusion:** Research, field trials, and case studies on AI, IoT, and smart irrigation in agriculture.
- Exclusion:** Studies without experimental validation, purely theoretical studies, or studies not focused on practical agricultural applications.

Summary of Selected Papers: A total of eight research papers were analyzed, covering a range of smart agriculture technologies, their applications, and potential challenges. These studies provide insights into the effectiveness of AI-based predictive analytics, IoT-enabled monitoring systems, and automated irrigation.

THEMATIC DISCUSSION

This segment explores key subject matters together with the implementation of clever farming technology, its benefits, and the demanding situations confronted in exceptional agricultural contexts, as shown in Figure 3.

The Role of IoT in Smart Farming: The integration of IoT in clever farming has brought about substantial improvements in precision agriculture. IoT-primarily based total sensors allow real-time tracking of soil moisture, temperature, and crop health, permitting farmers to make statistics-pushed decisions. IoT technology enhances performance via way of means of lowering water and fertilizer wastage. For example, studies from the European Commission observed that IoT-enabled farms decreased fertilizer utilization via way of means of 20% even as growing crop yields via way of means of 15%. These sensors additionally assist in detecting soil nutrient deficiencies, permitting centered fertilizer application, lowering environmental impact, and enhancing soil health, as shown in Figure 4.

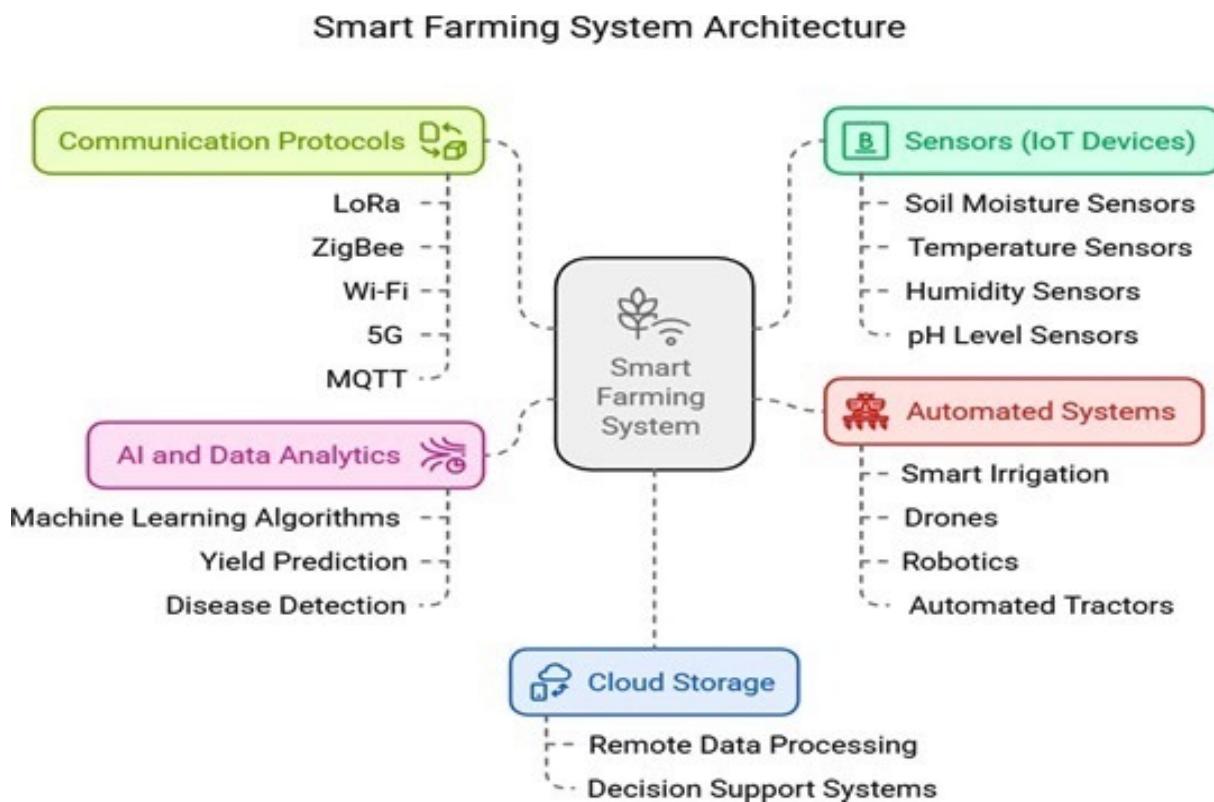


Figure 3: IoT-Based System Architecture Diagram

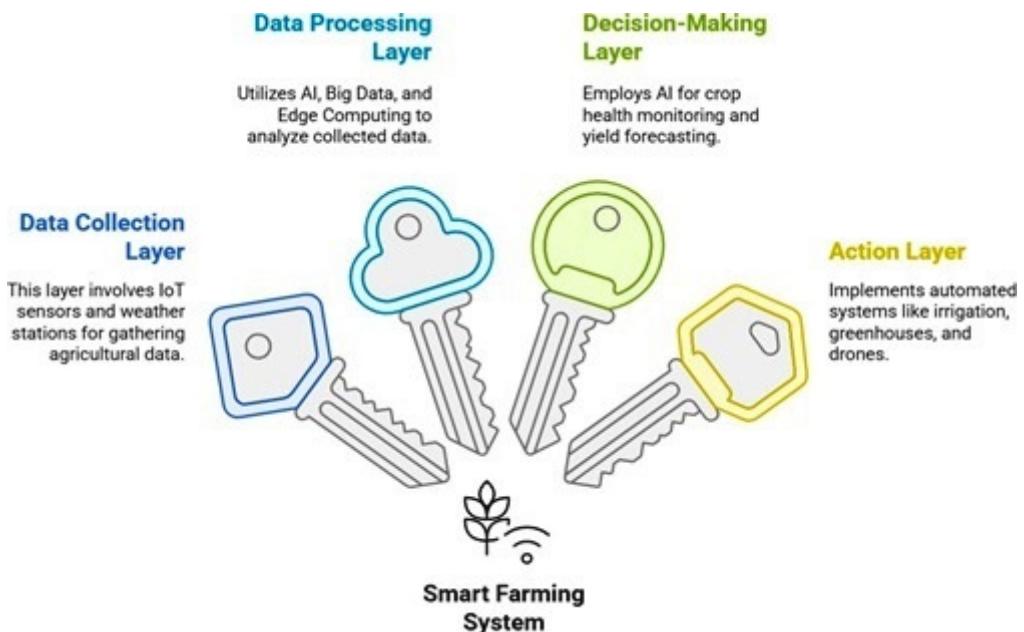


Figure 4: Component Diagram of Smart Irrigation Systems and Water Management

AI-Based Decision-Making in Agriculture: AI-powered analytics assist farmers in optimizing fertilizer use, expecting yield variations, and locating plant illnesses early. Machine-gaining knowledge of fashions has proven as much as 95% accuracy in sickness detection through the use of photograph processing

techniques. AI-pushed forecasting gear allows farmers to expect climate conditions, stopping capability yield losses. Moreover, AI packages in pest management have led to a 30% discount in pesticide utilization in pilot initiatives throughout Asia. AI-primarily based totally decision-making structures examine massive datasets to offer

predictive insights, permitting farmers to make knowledgeable alternatives regarding irrigation schedules, planting cycles, and pest control strategies.

The aggregate of AI and IoT guarantees a holistic technique to precision agriculture, minimizing losses and maximizing output, as shown in Figure 5.

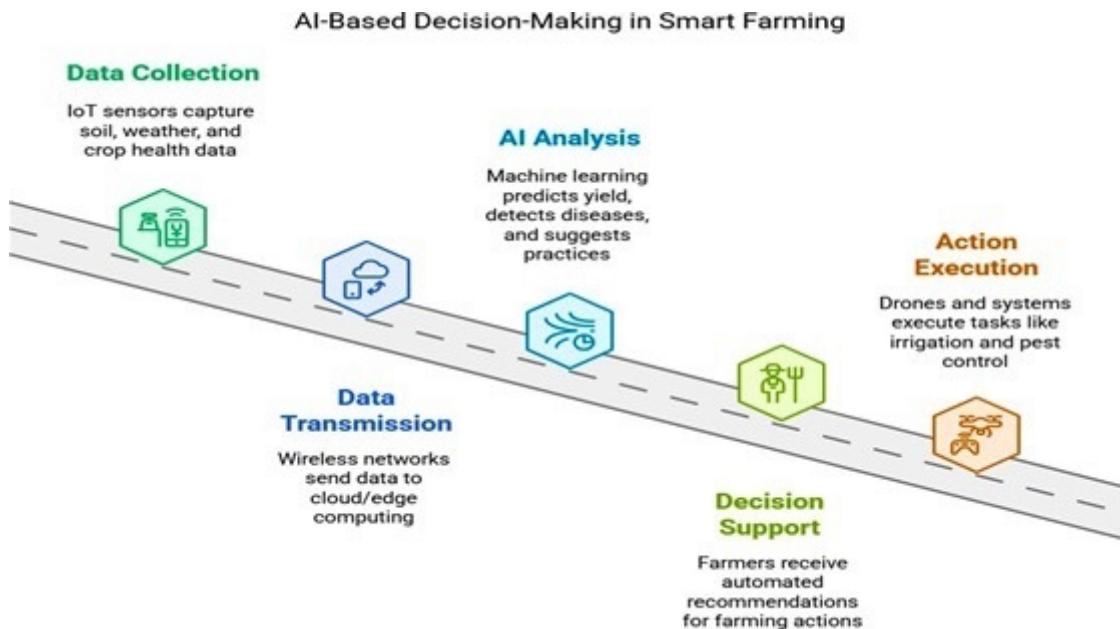


Figure 5: Ai-Based Decision Making Criteria

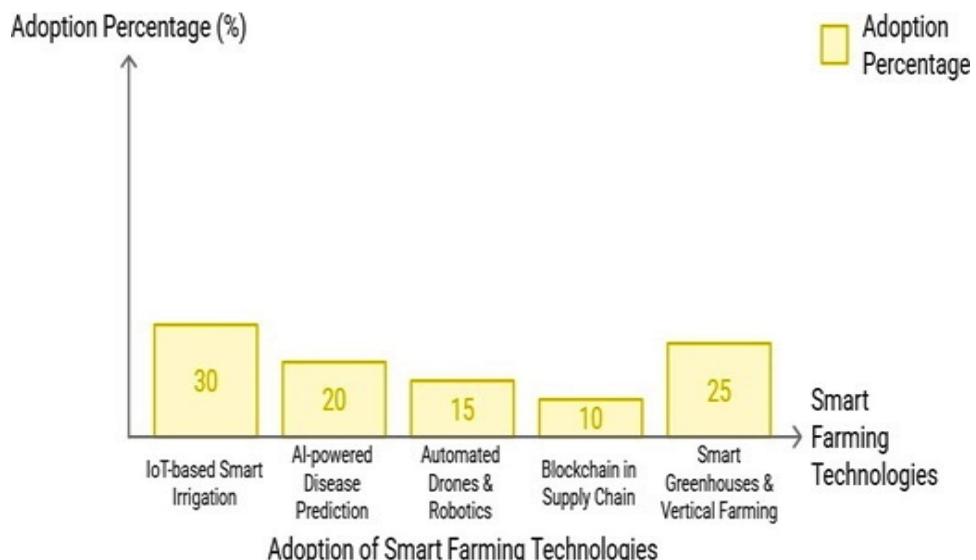


Figure 6: Challenges in Adopting IoT-Based Technologies

Smart Irrigation Systems and Water Management: Automated irrigation structures primarily based totally on IoT have decreased water intake via way of means of 3040%. These structures use real-time soil moisture statistics to optimize irrigation schedules, lowering water wastage. Smart irrigation technology, together with drip irrigation with computerized water waft management, has proven to decorate water use performance via way of means of as much as 60%,

mainly in drought susceptible regions. The integration of devices gaining knowledge of algorithms in irrigation structures permits predictive water control, adjusting water delivery primarily based totally on ancient climate styles and resent day soil conditions. Research indicates that AIpushed irrigation control can lessen water utilization via way of means of as much as 50% as compared to conventional irrigation strategies, even as keeping or maybe enhancing crop yield.

Challenges in Implementing Smart Farming Technologies:

Despite the benefits of clever farming, adoption is hindered via way of means of numerous demanding situations.

Figure 6 shows challenges of the farmer to adopt the smart farming technologies in early phase of their installation process in early phases.

- **High initial investment costs:** Farmers require an economic guide to put into effect clever farming technology.
- **Technical complexity:** Many farmers lack the vital virtual abilities to perform AI-primarily based total structures.
- **Infrastructure limitations:** Reliable net connectivity and energy delivery are required for IoT-primarily based totally farming solutions.
- **Data security concerns:** The growing digitization of agriculture affords dangers together with cyberattacks and statistics breaches.

RESEARCH GAPS AND OPEN CHALLENGES

Despite the benefits of smart agriculture, some gaps and challenges need to be further explored.

- **Economic Barriers:** Affordability of smart agriculture solutions remains a major challenge for smallholder farmers. Government incentives and subsidies could boost adoption. Research shows that more than 65% of smallholder farmers in developing regions cannot afford advanced smart agriculture tools, calling for alternative financing models such as leasing or coownership.
- **Technical Challenges:** IoT and Albased agricultural tools lack standardization. A unified framework for smart agriculture needs to be developed to ensure seamless integration. Many of the existing platforms operate independently of each other, resulting in inefficiencies and lack of interoperability.
- **Limited Empirical Studies:** Many AI models lack practical validation through

field trials. Further empirical studies are needed to understand how AI-driven decisions affect different environmental conditions. Large-scale field trials need to be conducted in different agroclimatic zones to assess the applicability of AI-driven models.

- **Policy and Regulatory Issues:** Standardized regulations on data security, AI applications, and IoT-based monitoring systems need to be established to ensure ethical use. Governments need to develop policies that protect farmers' data security while promoting technological advancements through research grants and public-private partnerships

FUTURE DIRECTIONS

To improve the adoption and effectiveness of smart agriculture, future research should focus on the following areas:

- **Development of Affordable Solutions:** Many smart agriculture solutions are economically out of reach for smallholder farmers. Future research should focus on low-cost AI and IoT models that deliver high efficiency with minimal investment. Developing open-source IoT platforms and modular AI systems could provide flexible and affordable solutions for smallholder farmers.
- **Strengthening Policy and Financial Support:** Governments should introduce incentive programs such as subsidies and low-interest loans to promote the adoption of smart agriculture, especially in developing countries. To ensure sustainable and farmer-friendly financing models, policymakers need to work closely with technology providers. Public-private partnerships can encourage investments in smart agriculture infrastructure to reach a wider scope.
- **Expansion of Real-World Field Trials:** Many AI-based models show high accuracy in controlled environments but lack real-world validation. Extensive field trials are needed to test their applicability under different climate and soil conditions. Data collected from such trials can help refine predictive analytics models and improve their reliability in different agricultural contexts.
- **Enhancing Interoperability Between Technologies:** Future research should consider integrated AI-IoT frameworks that ensure seamless data exchange and communication. Ensuring compatibility between different devices and platforms will allow farmers to adopt hybrid solutions without facing integration issues.
- **Leveraging Blockchain for Data Security and Transparency:** Blockchain technology ensures data integrity and transparency, making it easier for farmers to track and verify their smart agriculture operations. Secure and tamperproof records of soil health, crop cycles, and financial transactions have the potential to increase trust and efficiency within the agricultural supply chain.
- **Farmer Training and Education Programs:** The introduction of structured training programs will help farmers understand the benefits and ease of use of smart agriculture technologies, increasing adoption. Digital literacy campaigns and practical workshops should be prioritized to bridge the knowledge gap and equip farmers with technical skills.
- **Climate-Resilient Smart Farming Techniques:** Climate change remains a major threat to agriculture. Future research should explore AI-driven climate forecasting models and adaptive agricultural strategies that

can help farmers respond effectively to extreme weather events. AI-enabled irrigation planning and heat-tolerant crop varieties could play an important role in mitigating climate risks.

Conclusion: Smart farming technology can convert the rural quarter through improving productivity, sustainability, and useful resource efficiency. The evaluation highlights sizeable improvements in IoT primarily based tracking systems, AI-pushed predictive analytics, and automatic irrigation solutions. However, numerous barriers, inclusive of high implementation costs, constrained entry to technology, and the want for real-international area validation, maintain to preclude sizeable adoption. To triumph over those challenges, destiny studies have to be conscientiousost-powerful technological solutions, massive empirical studies, and policy-pushed incentives to inspire clever farming adoption. Governments, studies institutions, and personal quarter stake holders need to paint collectively to create a complete atmosphere that helps the transition to clever agriculture. Additionally, the position of statistics protection and moral AI implementation has to now no longer be overlooked. As farming turns into an increasing number of digitalized, making sure the privacy and safety of farmers' statistics is essential. Policymakers need to set up sturdy regulatory frameworks that sell transparency whilst safeguarding touchy agricultural statistics. Furthermore, investments in infrastructure, including rural net connectivity and IoT primarily based total tracking stations, need to be prioritized to bridge the technological hole among advanced and growing regions. With non-stop improvements in AI, IoT, and gadget learning, clever farming will play an essential position in addressing international protection challenges, making sure of monetary viability for farmers, and selling sustainable agricultural practices. If well carried out and supported, clever farming may be a gamechanger in agriculture, fostering resilience in opposition to weather change, decreasing environmental impact, and paving the manner for a extra green and technology-pushed agricultural destiny.

REFERENCES

[1] Food and A. O. of the United Nations, "How to feed the world in 2050," FAO High-Level Expert Forum, Rome, Italy, Tech. Rep., 2009, accessed: Feb. 18, 2025.

[2] A. P. Atmaja, A. E. Hakim, A. P. Wibowo, and L. A. Pratama, "Communication systems of smart agriculture based on wireless sensor networks in iot," *Journal of Robotics and Control (JRC)*, vol. 2, pp. 297–301, 7 2021.

[3] N. Hashim, M. M. Ali, M. R. Mahadi, A. F. Abdullah, A. Wayayok, M. Saufi, M. Kassim, and A. Jamaluddin, "Sciencedirect smart farming for sustainable rice production: An insight into application, challenge, and future prospect," 2024. [Online]. Available: www.sciencedirect.com

[4] N. B. K. Zaman, W. N. A. A. Raof, A. R. Saili, N. N. Aziz, F. A. Fatah, and S. K. Vaiappuri, "Adoption of smart farming technology among rice farmers," *Journal of Advanced Research in Applied Sciences and Engineering Technology*, vol. 29, pp. 268–275, 1 2023.

[5] D. Li, T. Nanseki, Y. Chomei, and J. Kuang, "A review of smart agriculture and production practices in japanese large-scale rice farming," pp. 1609–1620, 3 2023.

[6] R. S. Gawade, A. R. Rajurkar, and R. R. Kulkarni, "Enhancing smart farming through the applications of agriculture 4.0 technologies," *Research Gate*, Oct. 2022, accessed: Feb. 18, 2025. [Online]. Available: <https://www.researchgate.net/publication/364156082> Enhancing smart farming through the applications of agriculture 4.0 technologies

[7] Intellias. (2023) Artificial intelligence in agriculture: Benefits, use cases, and trends. Accessed: Feb. 18, 2025. [Online]. Available: <https://intellias.com/artificial-intelligence-in-agriculture/>

[8] N. G. Rezk, E. E. D. Hemdan, A. F. Attia, A. El-Sayed, and M. A. El-Rashidy, "An efficient iot based smart farming system using machine learning algorithms," *Multimedia Tools and Applications*, vol. 80, pp. 773–797, 1 2021.

[9] R. Manikandan, G. Ranganathan, and V. Bindhu, "Deep learning based iot module for smart farming in different environmental conditions," *Wireless Personal Communications*, vol. 128, pp. 1715–1732, 2 2023.

[10] E. S. Mohamed, A. A. Belal, S. K. AbdElmabod, M. A. El-Shirbeny, A. Gad, and M. B. Zahran, "Smart farming for improving agricultural management," pp. 971–981, 12 2021.

[11] S. K. Kakraliya, H. S. Jat, I. Singh, M. K. Gora, M. Kakraliya, D. Bijarniya, P. C. Sharma, and M. L. Jat, "Energy and economic efficiency of climate-smart agriculture practices in a rice–wheat cropping system of india," *Scientific Reports*, vol. 12, 12 2022.

[12] A. Raihan, M. Ridwan, and M. S. Rahman, "An exploration of the latest developments, obstacles, and potential future pathways for climate-smart agriculture," *Climate Smart Agriculture*, vol. 1, p. 100020, 11 2024. [Online]. Available: <https://linkinghub.elsevier.com/retrieve/pii/S2950409024000200>.

[13] A. A. Issa, S. Majed, S. A. Ameer, and H. M. Al-

Jawahry, "Farming in the digital age: Smart agriculture with ai and iot," in *E3S Web of Conferences*, vol. 477. EDP Sciences, 1 2024.

[14] E. M. Karunathilake, A. T. Le, S. Heo, Y. S. Chung, and S. Mansoor, "The path to smart farming: Innovations and opportunities in precision agriculture," 8 2023.

[15] W. E. Forum. (2022, Mar.) How technology can help address challenges in agriculture. Accessed: Feb. 18, 2025.

[16] E. Green. (2021) Environmental impact of traditional and vertical farming: 2021 report. Accessed: Feb. 18, 2025.

[17] ResearchGate. (2021) An illustrative representation of major challenges for traditional agriculture. Accessed: Feb. 18, 2025.

[18] U. of Manchester. (2020, Mar.) Challenging the doctrine of traditional farming. Accessed: Feb. 18, 2025.

[19] J. Josh. (2020, Feb.) Traditional agriculture and its impact on the environment. Accessed: Feb. 18, 2025.

[20] N. Vemuri, N. Thaneeru, and V. M. Tatikonda, "Smart farming revolution: Harnessing iot for enhanced agricultural yield and sustainability," *Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online)*, vol. 2, pp. 143–148, 7 2023.

[21] M. Mandapuram, R. Mahadasa, and P. Surarupu, "Evolution of smart farming: Integrating iot and ai in agricultural engineering," *Global Disclosure of Economics and Business*, vol. 8, no. 2, pp. 165–178, 2019.

[22] M. A. Alkhafaji, G. M. Ramadan, Z. Jaffer, and L. Jasim, "Revolutionizing agriculture: The impact of ai and iot," in *E3S Web of Conferences*, vol. 491. EDP Sciences, 2024, p. 01010.