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ABSTRACT: To improve the performance in complex sequential chores, simulating time-varying
parameters in robotic systems is essential. This review paper explores an advanced computational
framework for modeling and analyzing the dynamic parameters of robots like position, torque,
velocity, and force during sequential operations. Time-varying factors play a key role in defining the
accuracy and efficiency of robotic tasks, specifically in environments where tasks are multi-stage,
subject to changing conditions, and non-repetitive. The recommended simulation model incorporates
important techniques including kinematic modeling, adaptive control algorithms, and nonlinear
dynamic equations of motion to deliver real-time apprises on robot performance under joint friction,
external disturbances, and varying loads. A multi-parameter time-series approach is utilized to simulate
the unceasing interaction between robotic systems and their working environments. The model put on
finite element analysis to simulate machine-driven deformation, and stress confirming the consistency
of the robot’s structure during task execution. The review also includes reinforcement learning to let
robots self-improve in real-time as tasks progress, adjusting to unexpected variables like terrain
changes, task priorities, and fluctuating payloads. The dynamic task scheduling is controlled by
Markov decision processes which allow well-organized switching between tasks whilst minimizing
resource consumption and downtime. An inverse dynamics approach is engaged to compute actuator
forces and joint torques essential for the execution of the wanted movements, allowing for real-time
adjustments in speed and trajectory. To enhance the simulation's fidelity, sensor fusion procedures are
applied, joining data from multiple/compound sensors e.g., gyroscopes, force/torque sensors, and
cameras, etc. to deal with widespread feedback on the robot’s interface with its environment. This
feedback is managed by Kalman filters to alleviate noise and offer correct apprises to the control
system. Experiments results conducted on mobile robots and industrial robots performing tasks such as
object manipulation, navigation, and assembly line operations through dynamic environments
demonstrate that the simulated robots can adjust to time-varying factors with greater accuracy and less
error margins, helping improved operational robustness and task efficiency. The usage of trajectory
optimization algorithms in the simulation has shown a noteworthy decrease in wear on robot joints and
energy consumption by smoothing out motion paths and preventing sudden changes in movement.
Therefore, this review focuses on the presentation of a healthy simulation framework that efficiently
adapts and models to the time-varying parameters of robots during complex sequential tasks.
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INTRODUCTION

Accurate modeling of time-varying parameters
like joint torques, accelerations, and velocities is crucial
for creating accurate robotic simulations that faithfully
mimic real-world behavior (Spong et al., 2006). These
parameters impact the robot's accuracy, efficiency, and
security during task performance, letting developers
envisage and mitigate probable issues before deployment
(Liu and Chen, 2019). Control systems as well as
optimization methods improve the practicality and
functionality of robotic models, confirming robots can
become accustomed to dynamic environments with
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higher accuracy and safety. Machine-driven wear and tear
are serious factors in the long-standing performance and
trustworthiness of robots. Techniques like predictive
maintenance and adaptive control help outspread the
robot's working lifespan and increase efficiency and
safety in long-term  deployments. Time-varying
parameters also affect a robot's adaptability to
unpredictable and complex task sequences, augmenting
the reliability and flexibility in complex and
unpredictable applications.

Managing sequential dependencies between
tasks requires tactics i.e. hierarchical task planning, pre-
and post-condition modeling, reinforcement learning,
task dependency graphs, dynamic task error recovery
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mechanisms, and scheduling. These methods confirm
reliable and efficient action in complex, changeable
environments. Advanced control approaches, like
adaptive control, Model Predictive Control (MPC), robust
control, state estimation, dynamic modeling, and feed-
forward control maintain constancy despite parameter
variations. Control algorithms that adapt to dynamic
changes in system parameters are essential for real-time
robotic systems. Robots use sensor feedback, adaptive
control, control systems, machine learning algorithms,
and fault detection systems to sense and react to
deviancies in  time-varying  parameters.  These
mechanisms ensure efficiency, safety, and precision
during task completion. Robotic simulations account for
unpredictable or extreme differences in time-varying
parameters, and time-varying parameter models can scale
through diverse platforms and tasks. Simulation
authentication for robot time-varying parameters includes
physical model testing, real-world data assessment,
scenario testing, sensitivity analysis, machine learning,
benchmarking, and  real-time  feedback. @ The
accomplishment of a robot's performance in handling
serial tasks with time-varying parameters can be
evaluated through metrics like accuracy, task completion
time, energy consumption, adaptability, and safety. Joint
torque is the rotational force exerted on a robot's joints
during movement, influenced by factors like
configuration, payload, and frictional forces. Robotic
simulations use dynamic models, such as Newtonian
mechanics or the Lagrangian approach, to accurately
model joint torques. Real-time adjustments to joint torque
are required, often using PID control systems, to ensure
safe operational limits in safety-critical applications like
manufacturing and healthcare. Accelerations and
velocities are key parameters in robot motion, used in
simulations to accurately model their speed and rate of
change. These parameters are crucial for high-speed
robotic applications, such as pick-and-place tasks in
industrial settings. Realistic simulations ensure constant
monitoring and adjustment of these parameters to
maintain stability and precision. Excessive acceleration
can lead to mechanical wear and tear, making it essential
to model limits to prevent damage or operational
inefficiency. Robotic simulations face challenges in
continuously adjusting time-varying parameters during
task execution. Real-time feedback and control systems,
like MPC, optimize joint torques, velocities, and
accelerations. These methods minimize energy
consumption, improve task efficiency, and extend the
robot's lifespan. By integrating real-time adaptation and
optimization, developers can fine-tune parameters for
safer and more efficient robot operation.

Methods for Accounting for Mechanical Wear and
Tear: To maintain the efficiency and longevity of
machinery/robots methods for accounting for mechanical
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wear and tear play a critical role. One of the common
methods used is depreciation accounting, where the cost
of equipment is gradually written off over its useful life,
reflecting the predictable wear and tear. Techniques like
accelerated depreciation or straight-line depreciation
methods, i.e. double-declining balance, can be applied
depending on how speedily the equipment is estimated to

damage. Moreover, condition-based monitoring is
assisted by regularly judging the machinery's
efficacy/performance and/or condition to envisage

whether mechanical wear or repair substitutes are desired.
Predictive maintenance influences sensors to forecast and
data analytics, leading to timely interferences. This
arrangement of proactive maintenance strategies and
financial accounting warrants that wear and tear are
systematically mitigated and tracked (See Table 1).

Degradation Models: One common approach to account
for wear and tear is through degradation models, which
simulate the progressive deterioration of mechanical
components. These models incorporate the effects of
fatigue, friction, and material degradation into the
simulation. For instance, fatigue-based models use
historical data on component failure rates to predict the
lifespan and efficiency loss of parts such as motors and
gears (Jardine et al., 2006). These models allow
engineers to estimate how much wear a robot's joints or
actuators can withstand before performance begins to
deteriorate significantly.

Friction and Stiction Models: As mechanical
components degrade, frictional forces within joints and
between moving parts tend to increase, which directly
impacts the accuracy of a robot’s movements. Friction
models, such as the Coulomb and viscous friction
models, simulate the increase in resistance over time due
to wear. Similarly, stiction (static friction) models
account for the higher resistance encountered when
starting motion from rest. These friction models are
integrated into the robot’s dynamic equations to adjust
parameters like joint torque and velocity to reflect the
additional energy required to overcome increased friction
(Canudas-de-Wit et al., 1995).

Component Health Monitoring: Some  systems
incorporate sensors to monitor the health of critical
components, such as encoders that track the wear on
bearings or strain gauges that measure load and stress on
joints. This real-time data is used to update the robot’s
dynamic model and adapt to changing performance
capabilities. For instance, as the wear increases, control
algorithms can adjust joint torques or velocities to
maintain consistent performance (Mobley, 2002). By
integrating component health data into simulations,
parameter variations due to wear can be accurately
predicted and managed over time (See Table 1).
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Table 1: Different methods for accounting for mechanical wear and tear in robots

Method References Advantages Description Limitations
. Decreases sudden Scheduled maintenance This may lead to over-
Ug;ﬁ;ﬁ:;ice 2H002n??yan etal, downtime and activities based on time or maintenance and increased
breakdowns. usage to avoid failures. costs.
_ Detect |_n|t|al signs of Examln_es I_ubrlcant for _ Needs recurrent sampling
Lubricant Acar et al., wear without contamination by wear particles R
. . . . - and analysis; equipment-
Analysis 2020 disassembling to judge the state of mechanical specific
components. components. P '
ggse%ltlon- Uhlmann et al Minimizes useless Checking real-time data to Requires sensors and
Monitorin 2020 "’ repairs; lessens determine equipment situation continuous monitoring
g downtime. and maintenance requirements. systems.
(CBM)
Uses infrared cameras to sense Needs specialized
Thermal Lintvedto., Non-invasive and offers abnormal heat arrays that show as Sp
. . —_— . . equipment and knowledge
Imaging 2023 quick results. friction and wear in mechanical . -
for interpretation.
components.
. N Measures vibrations in
. . . Effective for an initial . . .
Vibration Jianlongetal., . = . components to detect signs of  Requires expert analysis and
. finding of mechanical oo A .
Analysis 2022 wear, misalignment, or can be sensitive to noise.
problems. .
imbalance.
Utilizes data analytics and
Predictive Reduces unplanned machine learning to predict Requires extensive data
h Pookkuttath et ; - . ) .
Maintenance downtimes and optimizes when failures may occur, collection and analysis
al., 2022 . o S
(PdM) resource usage. allowing for optimized capabilities.
maintenance.
. . Evaluate the environmental .
Life Cycle Stuhlenmiller et Offer_s Wldespread long- impact and wear over the entire Complex to |_mplement and
Assessment | 202 term insights into robot lif le of the robot. f may need adjustments over
(LCA) al., 2021 longevity ife cycle of the robot, from time
' manufacturing to disposal. '
. . An effective replica of the robot
Let real-time checking . . . .
_ . X that simulates its wear and tear Complexity and high
Digital Twin  Yao et al., 2023 and forecasting for ; . . . .
. : over time, guessing failures and implementation cost.
proactive maintenance. .
maintenance needs.
Integration into Parameter Variation: Adaptive interrelates with changing environments or performs

control techniques are used to integrate wear and tear into
a robot's parameter variation model. These techniques
regulate control parameters built on real-time feedback
and system dynamics, reimbursing for decreased
efficiency. Predicting maintenance algorithms utilize
sensor data to envisage component failure, leading to
maintenance scheduling before significant performance
breakdown or loss. Probabilistic models, like the
Bayesian framework, capture ambiguity in wear
development, permitting more accurate predictions of
when wear will significantly affect the robot's operations.

Task Complexity and Sequential Planning: Time-
varying parameters such as joint torques, accelerations,
velocities, and external forces play a vital role in defining
a robot’s capability to adjust to unpredictable and
complex task sequences. These parameters dynamically
change during a robot's operation, particularly when it
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multi-step tasks (See Table 2). How well a robot can grip
these time-varying situations directly affects its
adaptability, overall performance, and precision in real-
time, especially in tasks that need a high degree of
flexibility and responsiveness. Robotics are equipped
with various parameters to ensure their performance in
various tasks. Joint torque, a crucial parameter,
determines the force applied by each joint to perform
tasks. In unpredictable environments, the robot must
adjust its torque to maintain stability and accuracy.
Adaptive controllers like Model Reference Adaptive
Control (MRAC) can modify torque in real time based on
task demands, enabling the robot to dynamically handle
unpredictable tasks. Velocity is another critical
parameter, affecting the robot's ability to adapt. It must
vary its speed in response to task complexity or
environmental conditions. Time-varying velocity control
allows robots to switch between high-speed and high-
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precision modes based on the task sequence. Failure to
adapt velocity can result in inefficient operation or errors
in delicate procedures, negatively impacting the robot's
overall task adaptability. Acceleration also plays a role,
directly impacting a robot's ability to maintain balance
and stability while performing complex tasks. Time-
varying control of acceleration ensures the robot adapts
fluidly to the unpredictable aspects of the task,
maintaining safety and accuracy.

Role in Handling Unpredictable Task Sequences:
Time-varying parameters in robots empower them to
handle random task sequences, letting them adjust
dynamically to innovative information.  These
considerations are essential in dynamic environments,
specifically in human-robot collaboration, where the
robot's capability to adjust its behavior in answer to
changeable inputs is needed for safe and effectual
cooperation. The capability to cope with successive needs
between tasks is critical in robotics and further fields
where composite, multi-step operations are completed.
Careful planning, as well as performance, are compulsory
to confirm each task is completed in the correct order and
any variations in one task are accounted for in subsequent
ones. Several strategies are employed to optimize
efficiency and reliability, often used in tandem.

Hierarchical Task Planning: Hierarchical task planning
is a common strategy for breaking down tasks into sub-
tasks with dependencies mapped in a top-down structure.
This method breaks down high-level goals into
manageable actions, organized according to their
dependencies. For example, in assembly-line robots, each
stage depends on the previous one's completion. This
helps robots or systems execute steps correctly, manage
dependencies, and trace and adjust sequences based on
outcomes from earlier tasks.

Pre- and Post-Condition Modeling: Pre- and post-
condition modeling is a technique that defines the
conditions required before and after a task, ensuring that
outcomes match prerequisites for the next task. This
approach helps dynamically assess task readiness,
preventing premature execution and potential failure. It
ensures logical and accurate handling of dependencies,
allowing early detection of errors or inconsistencies. For
example, in industrial robotics, successful positioning of
a part requires pre-condition satisfaction for task B to
begin.

Task Dependency Graphs: A task dependency graph
makes it simple to identify essential paths and possible
bottlenecks by providing a visual depiction of the
sequential links between jobs. It is especially helpful in
intricate systems like driverless cars, where there are
several interdependent jobs, such as city navigation. This
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organized representation guarantees effective functioning
and aids in the management of related duties.

Reinforcement Learning for Sequential Tasks:
Reinforcement learning (RL) is a strategy that helps
robots and systems learn the optimal sequence of actions
through trial and error. It adapts to changing
environments and handles dependencies dynamically. RL
is particularly effective when dependencies between tasks
are not explicitly known or highly variable. For example,
in robotic manipulation, RL optimizes the robot's
performance by continuously learning from task
outcomes, ensuring successful task completion and
optimal performance.

Dynamic Task Scheduling: Dynamic task scheduling is
a real-time method that adjusts task execution based on
the system's state and environment, ensuring System
efficiency. It's crucial for tasks with varying durations or
unexpected delays. In human-robot collaboration, helps
robots adjust task sequences based on worker pace or

material  availability,  ensuring  flexibility — and
responsiveness to complex task dependencies.
Error Recovery Mechanisms: Error  recovery

mechanisms are crucial for managing sequential task
dependencies. They allow a system to retry, adjust
subsequent tasks, or recover from errors without
disrupting the overall sequence. This mitigates risks
associated with task dependencies and prevents cascading
failures. For instance, in surgical robots, error recovery
mechanisms compensate for deviations in outcomes by
adjusting subsequent actions to compensate for the
variation.

Stability and Control: Ensuring system stability when
time-varying parameters, such as mass or center of
gravity (CoG), change during a task is a crucial aspect of
robotic control and dynamic systems. These parameters
can shift due to various factors like load variations,
environmental interactions, or internal changes within the
system itself. Managing such changes requires advanced
control strategies to prevent instability and ensure the
robot can continue to operate safely and effectively.

Here are several approaches used to ensure stability
in the presence of time-varying parameters:

Adaptive Control: Adaptive control is a real-time
method used to handle system parameters like mass and
CoG in industrial robots. It continuously monitors
performance and adjusts control laws to compensate for
changes. Adaptive controllers adjust torque and force
inputs based on changes in mass and CoG, maintaining
stable operation. This method is particularly useful in
robotic manipulators where mass distribution can shift.
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Table 2: Role of Time-Varying Parameters in Handling Unpredictable Task Sequences.

Time-Varying  Researchers

Parameter

Explanation

Role in Handling Unpredictable
Task Sequences

Galvan-Perez
Speed Adaptation et al. (2023)
optimize performance.

MacDonald et

Force Control al. (2024)
precision.
Learning Rate in \(/;/gr;g) etal.  Time-varying learning rates in machine

ML Algorithms

Sensor Fusion

o (2013) become more important in a task, robots give
Weighting higher weight to their inputs.
Task Somani etal. Robots can reorder tasks dynamically based on
(2016) emerging needs or changes in task sequences,

Prioritization

ensuring critical tasks are prioritized.
Robots can conserve energy during low-

Nonoyama et

II\E/In;r:ggement al. (2022) intensity tasks and increase output during high-
demand tasks to ensure efficiency.
Yue et al., Modifying control gains dynamically helps
Control Gains (2024) robots remain stable when faced with

unexpected disturbances or changes in tasks.

Robots can slow down for complex, delicate
tasks and speed up for simpler, urgent tasks to

Robots adapt their grip force when handling
fragile or complex items, increasing safety and

learning algorithms allow robots to learn faster
or slower, based on the task dynamics.

Zhang & Wei, When critical sensors (e.g., vision or touch)

Adjusts speed dynamically to
respond to changes in task difficulty
or urgency.

Modifies applied force based on the
object's properties and task
requirements.

Changes the learning rate to enable
quicker adaptation to task
variability.

Dynamically adjusts the importance
of sensory input based on
environmental changes.

Changes task priority in real-time,
depending on the task or
environment.

Regulates energy use to balance
consumption and performance in
varying tasks.

Adjusts control parameters to
maintain stability during
unpredictable conditions.

Robust Control: Robust control is a method that ensures
stability despite uncertainties or variations in system
parameters. It handles a predefined range of parameter
variations without real-time updates, ensuring stability
even when parameters like mass or CoG change. This
technique is commonly applied in systems with
predictable time-varying parameters, such as autonomous
vehicles or drones navigating dynamic environments.

MPC: MPC is a strategy that maintains system stability
in complex, multi-task operations. It predicts future
system behavior based on a dynamic model and adjusts
control actions accordingly. MPC is particularly useful in
robotic arms, where parameter variations are frequent. By
continuously updating its model, MPC calculates optimal
control actions to stabilize the robot's movement amidst
these changes.

State Estimation Techniques: Accurate state estimation
is crucial for maintaining stability in time-varying
parameters. Techniques like the Kalman filter or
extended Kalman filter (EKF) estimate internal states like
mass and CoG, allowing real-time control strategies. For
legged robots, state estimation helps predict and adjust
posture to maintain balance and stability during
movement, ensuring stability.

Feedforward Control: Feedforward control is a method
that anticipates changes in time-varying parameters and
adjusts the system's control actions accordingly. It uses
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predictive models to proactively adjust control inputs,
allowing for system stabilization before instability
occurs. For example, in robotic arms, feed-forward
control can adjust motor torques in anticipation of mass
changes, preventing instability or oscillations.

Dynamic Modeling and Parameter Identification:
Accurate dynamic models, including mass, CoG, joint
torques, and external forces, are crucial for robot
stability. Continuous parameter identification methods
update the robot's internal model in real time, allowing
the control system to anticipate and correct potential
instability. For surgical robots, continuous monitoring
and model updating ensure precise, stable performance
by adapting to time-varying forces and dynamics.

Fuzzy Logic and Artificial Neural Networks: Fuzzy
logic and artificial neural networks (ANNSs) are effective
in handling non-linear and uncertain time-varying
parameters in robotic systems. Fuzzy logic controllers use
approximate reasoning, while ANNs learn from
experience and adjust control actions based on complex
relationships between system states and parameters.
These approaches ensure stability by learning and
adapting over time.

Energy-based Stability Criteria: In some systems,
ensuring stability relies on maintaining a consistent
energy balance. Techniques like the Lyapunov stability
criterion are used to guarantee that the total energy of the
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system remains bounded despite variations in time-
varying parameters. By designing controllers that ensure
the system's energy dissipates or remains within safe
limits, these methods provide a mathematical guarantee
of stability, even as parameters like mass or CoG
fluctuate (Haddad et al., 2006).

4- Optimization and Performance: Optimizing time-
varying parameters in robots, such as joint torques,
velocities, and accelerations, is crucial for minimizing
task completion time while ensuring energy efficiency
and precision. Achieving this balance involves a
combination of real-time control algorithms, advanced
optimization techniques, and physical models of the
robot's dynamics. Here's how these time-varying
parameters are optimized:

Trajectory Optimization: One of the most effective
methods for minimizing task completion time and
optimizing energy efficiency is trajectory optimization.
This involves determining the optimal path that the robot
should follow to complete a task while accounting for the
robot's kinematic and dynamic constraints. The time-
optimal Trajectory Planning method minimizes the time
required to move from one point to another while
respecting the robot’s dynamic limits, such as maximum
velocity and acceleration. Time-optimal trajectories push
the robot's joints and actuators to their limits, reducing
overall task time but still adhering to safety constraints
(Bry & Roy, 2011). The energy-efficient Trajectory
Planning approach minimizes energy consumption during
the task. Energy-efficient trajectories avoid high-speed or
abrupt movements, which consume more power.
Optimizing energy can involve selecting paths that
reduce joint torques or resistive forces (Kndchelmann et
al., 2020). In industrial robots, optimal joint trajectories
are calculated by minimizing a cost function that
combines time, energy, and torque constraints. The goal
is to maintain precise movements while completing tasks
as quickly and efficiently as possible.

MPC: MPC is a powerful real-time control algorithm
that optimizes time-varying parameters dynamically.
MPC uses a predictive model of the robot's dynamics to
calculate the optimal control inputs at each time step,
minimizing task time and energy consumption. MPC
continuously predicts the future states of the robot based
on its current time-varying parameters (such as position
and velocity) and adjusts the control inputs to minimize
task completion time. MPC can incorporate energy
consumption as part of the optimization problem by
adding energy-related terms to the cost function. For
example, it can prioritize minimizing the integral of
power consumption over the tasking horizon (Qin &
Badgwell, 2003) i.e. in mobile robots, MPC can be used
to optimize paths and speed while considering battery
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consumption, minimizing both task time and energy
usage Braunl, (2012).

Multi-Objective Optimization: Multi-objective
optimization techniques address the trade-off between
minimizing task completion time, energy efficiency, and
precision by optimizing multiple criteria simultaneously.
These methods use Pareto frontiers to explore the best
balance between conflicting objectives. Multi-objective
optimization generates a set of solutions (Pareto-optimal
solutions), where improving one objective (e.g., task
completion time) results in sacrificing another (e.g.,
energy consumption or precision). This allows the
operator or control system to choose the most appropriate
solution based on current operational requirements (Deb
et al., 2002). Genetic algorithms are often used in multi-
objective optimization, as they can explore a large search
space and provide a set of optimal solutions by
mimicking biological evolution (Srinivas & Deb, 1994),
i.e. in robotic surgery, multi-objective optimization is
used to ensure precision in tool movements while
minimizing energy consumption and time spent during a
procedure.

Adaptive Control and Learning-Based Methods:
Adaptive control systems continuously adjust the robot's
parameters based on real-time feedback to optimize
performance for specific tasks. These systems can
account for changes in the robot's dynamics,
environment, or task complexity. Adaptive controllers
adjust joint torques and velocities in real-time, learning
from the task's execution to reduce energy consumption.
These systems can optimize movements by reducing
unnecessary accelerations and decelerations.
Reinforcement learning algorithms allow robots to learn
optimal strategies for minimizing task completion time
and energy use through trial and error. These algorithms
adjust control parameters based on feedback from the
environment, allowing robots to improve efficiency over
time (Kober et al., 2013), i.e. in manufacturing, adaptive
controllers can dynamically adjust a robotic arm’s speed
and force to minimize energy use without sacrificing
precision (Xu, 2007).

Dynamic Programming: Dynamic programming is an
optimization method that divides a complex task into
smaller sub-problems and solves each one optimally (Xu,
2007). It’s particularly useful for optimizing time-varying
parameters over a sequence of movements or tasks.
Bellman’s Principle of Optimality principle is applied in
dynamic programming, where the overall task is
optimized by finding the best decisions at each step. The
robot’s joint angles, velocities, and accelerations are
optimized to reduce task time and energy use step-by-step
(Bellman, 1957). Dynamic programming can be used to
solve optimal control problems where the robot’s entire
movement is planned to minimize energy consumption
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and time across all steps of the task, i.e. in robotic pick-
and-place tasks, dynamic programming can be used to
optimize joint angles and velocities to ensure the fastest
possible movement with minimal energy use.

Fuzzy Logic and Heuristics: Fuzzy logic and heuristic
methods can be wused to fine-tune time-varying
parameters when dealing with uncertain or imprecise
conditions. These methods are particularly useful when
it's difficult to model the system exactly or when human-
like reasoning is required. Fuzzy logic controllers make
decisions based on imprecise or fuzzy inputs (e.g.,
approximate positions or velocities). These controllers
can adjust the robot's parameters to balance between
speed, energy efficiency, and precision, especially in
unstructured environments (Zadeh, 1965). Heuristic
algorithms, such as particle swarm optimization, are often
used to find near-optimal solutions quickly. These
algorithms are effective in high-dimensional problems,
such as optimizing time-varying parameters across
multiple joints and tasks, i.e. in healthcare robotics, fuzzy
logic may be used to control a robot’s joint angles and
force to maintain both speed and safety when interacting
with patients.

Task-Specific Optimizations: In some cases, robots
perform highly specialized tasks that require fine-tuning
of specific time-varying parameters. For example, a
welding robot needs to adjust its path, speed, and heat
application for precise and efficient welds. In tasks such
as robotic painting or welding, optimizing the robot's path
and velocity in real time ensures both precision and
energy efficiency. The system continuously adjusts the
speed and angle of the tool to achieve the best coverage
with the least energy expenditure, i.e. in robotic painting,
optimizing the speed and path of the arm minimizes paint
waste, energy consumption, and task completion time.

Learning and Adaptability: Machine learning
techniques can be used to predict and optimize time-
varying parameters in complex tasks by leveraging vast
amounts of real-time data generated by robots.
Reinforcement learning (RL) is a key approach, where
robots learn optimal actions through trial and error,
receiving feedback in the form of rewards or penalties
based on their performance. This allows the robot to
adjust parameters dynamically to changing conditions or
unexpected challenges. Supervised learning uses
historical data from past tasks to train models that predict
how time-varying parameters will evolve under different
conditions. Deep learning algorithms analyze large
datasets to identify patterns in the robot's performance,
allowing for real-time optimization of parameters.
Transfer learning allows robots to apply knowledge
gained from one task to optimize performance in related
tasks, reducing training time. By integrating these
machine learning techniques, robots can continuously
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optimize their performance, reduce errors, and adapt their
behavior in complex, dynamic environments. Imitation
learning allows robots to learn from expert
demonstrations, adjusting their parameters based on
successful task completions and adapting to new tasks
that share similarities with past experiences. Transfer
learning further extends this by enabling robots to
transfer knowledge from one task to another, allowing
them to adjust their parameters more efficiently in new
but related tasks.

Error Handling and Recovery: When task errors or
interruptions occur, robots adjust their time-varying
parameters, such as joint torques, velocities, and
accelerations, using a combination of real-time feedback
control, adaptive control algorithms, and error recovery
strategies. These mechanisms allow the robot to adapt
and compensate for deviations from the desired task
trajectory. Robots often use feedback control loops, such
as Proportional-Integral-Derivative (PID) controllers, to
continuously monitor task execution. If an error or
interruption is detected, the controller adjusts parameters
like velocity or torque to correct the error in real-time.
For instance, if a robot's arm encounters unexpected
resistance while moving, the feedback system will
modify the applied torque to maintain stability and
prevent damage (Franklin & Powell, 2014). In more
complex environments, adaptive control is used to handle
changes in system dynamics caused by errors or task
interruptions. Adaptive control systems can automatically
tune the robot’s parameters by estimating unknown
variables, such as changes in the robot's mass or center of
gravity, during the task. This helps the robot to adapt on
the fly and continue the task despite disturbances
(loannou & Sun, 2012). MPC systems use a dynamic
model of the robot to predict future states based on
current conditions. When errors or interruptions occur,
MPC recalculates the optimal control inputs to adjust the
time-varying parameters and guide the robot back to the
desired trajectory, minimizing delays or further errors
(Mayne, 2014). Machine Learning-Based Adjustment: In
advanced systems, machine learning algorithms may be
employed to predict the occurrence of errors and adjust
parameters accordingly. For example, reinforcement
learning algorithms can learn from past task executions,
enabling the robot to autonomously adjust parameters
when similar errors occur in the future (Kober et al.,
2013). In this way, the robot gradually improves its
resilience to interruptions and errors. In all these
methods, ensuring the system's stability while adjusting
parameters is critical. This involves balancing speed and
precision while also considering safety factors,
particularly in tasks where human-robot collaboration is
involved.

Communication and Data Fusion: Multiple sensors in
systems provide feedback, requiring data fusion from
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various sources. Techniques like Kalman filtering
combine data from sensors to provide more accurate
estimates. Sensor data is crucial for adjusting parameters
during task execution, ensuring optimal performance and
safety in dynamic environments. Sensors continuously
monitor internal and external conditions, allowing real-
time adjustments to key parameters, enhancing precision,
adapting to changes, and maintaining system stability.
Sensors like encoders, accelerometers, and gyroscopes
provide continuous real-time data about the robot's
positions, velocities, and forces. This data allows the
control system to adjust parameters to ensure that the
robot follows the desired trajectory and meets
performance goals. For example, joint torque sensors
help regulate the force applied to specific components,
ensuring smooth motion even in unpredictable
environments (Mayne, 2014). Sensor data enables the
detection of errors or deviations from expected behaviors
during task execution. For example, if the robot
encounters unexpected resistance, force sensors detect
this, and the control system adjusts torque to prevent
mechanical damage or task failure. Control algorithms
like PID (Proportional-Integral-Derivative) or MPC use
sensor data to minimize errors and correct deviations
(Chinnappa, 2023). In complex environments, adaptive
control strategies based on sensor feedback allow robots
to adjust to time-varying parameters in real time. For
instance, when lifting objects of varying weight, force
sensors measure the load, and the robot adapts its grip
strength accordingly to avoid slippage or damage (Craig,
2018). Adaptive control algorithms can modulate the
joint velocities and torques dynamically to maintain
stability and accuracy in performing tasks (Rudomanenko
et al., 2021). In human-robot collaboration (HRC)
settings, proximity sensors, vision systems, and force
sensors play a key role in preventing accidents. Sensor
data ensures that the robot maintains safe distances from
humans or other obstacles. If sensors detect an impending
collision, the robot can instantaneously reduce speed,
adjust force, or stop altogether to ensure safety (Navarro
et al., 2014; Goger et al., 2010; Ajoudani et al., 2017;
Villani et al., 2018). Long-term use of robotic systems
leads to wear and tear in mechanical components. Sensor
data can detect changes in performance due to this wear,
such as increased friction in joints or decreased accuracy
in motion. By monitoring these deviations, control
systems adjust time-varying parameters like torque to

compensate for degradation, extending the robot's
operational life (Isermann, 2006).
Robustness and Scalability: The robustness of

simulations in addressing unpredictable time-varying
parameters depends on the quality  and
comprehensiveness of models, algorithms, and scenarios
used. Modern robotic simulations, particularly those
involving joint torques, velocities, and accelerations, use
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advanced methods to account for uncertainties and adapt
to unforeseen changes. In simulations where extreme
variations in parameters can occur, probabilistic or
stochastic models are often employed. These models
account for random variations in forces, torques, or
environmental factors. By introducing randomness into
the simulations, the system’s behavior under rare or
unpredictable conditions is tested more thoroughly.
Monte Carlo simulations, for instance, use a large number
of random samples to estimate the effects of
unpredictable variations (Tedrake Russ, 2023). Robust
simulations use adaptive control strategies that modify
the robot’s behavior in real-time as variations occur.
Algorithms such as MPC or Reinforcement Learning-
based controllers adjust the robot's movements and
parameters dynamically, allowing the robot to react to
unexpected conditions like sudden load changes or shifts
in the center of gravity. These adaptive algorithms help
the robot handle extreme variations with greater precision
and stability (Chen and 11" Astolfi, 2021).

In some scenarios, simulations are designed to
stress-test robots by subjecting them to extreme
variations in parameters beyond normal operating
conditions. These include simulating sudden and
unpredictable shifts in joint forces, temperature extremes,
or abrupt mechanical changes due to wear and tear. This
allows engineers to identify weak points in the system
and improve the robot’s tolerance for such extreme
conditions. Environmental stress testing is crucial for
environments like space exploration or hazardous
industrial tasks (Milecki and Nowak. 2023). Simulations
that integrate real-time sensor data can adapt to extreme
changes more effectively. Sensor data allows the
simulation to adjust key parameters—such as velocity or
acceleration—on the fly. The inclusion of realistic sensor
noise or delays in these simulations ensures that the
models reflect real-world challenges. In more advanced
systems, simulations with real-time feedback loops from
sensors can detect outliers in time-varying parameters
and compensate in real time, increasing the robustness of
the model (Rudomanenko et al., 2021). In the event of
extreme variations causing subsystem failures (e.g.,
motor breakdowns or joint malfunctions), fault-tolerant
control strategies are built into the simulations. These
systems allow the robot to continue functioning by
isolating the failure and compensating with operational
components. Redundant systems or software-based fault
detection algorithms are often included to ensure that
even in extreme cases, the system can maintain some
level of performance (lsermann, 2006). Simulations are
used to test the robustness of robots' time-varying
parameter control, exposing them to sudden changes in
torque or speed without losing stability. These
simulations expose the robot to various tasks and
platforms, ensuring it can adjust appropriately without
losing stability. The scalability of these models is a
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complex challenge but can be achieved with appropriate
modeling strategies and adaptation mechanisms. Scaling
these models requires accounting for differences in the
robot's physical structure, task complexity, and
environmental factors.

Validation and Testing: Validating simulations is
crucial for ensuring robots' time-varying parameters, such
as joint torques, velocities, accelerations, and dynamic
properties, behave as expected in real-world tasks. This
process involves comparison with real-world data,
performance evaluation, and systematic testing under
varying conditions. Robotic simulations are validated by
comparing simulated behavior with  real-world
experimental data. This involves running the robot
through tasks in both real and simulated environments
and collecting data on critical parameters like joint
angles, velocities, and forces. The simulation is adjusted
to minimize discrepancies between simulated and actual
values. High-fidelity sensors on the physical robot
capture real-time data, comparing predicted outputs to
actual behavior. Hardware-in-the-loop (HIL) simulations
use physical models to validate a robot's dynamic
properties in real-time scenarios. HIL tests a portion of
the robot's hardware, such as actuators or sensors, while
simulated parts are tested. This hybrid approach identifies
any mismatches between simulation assumptions and
physical behavior due to factors like mechanical wear or
environmental changes. Simulation validation involves
sensitivity analysis on time-varying parameters, such as
mass, friction, or stiffness, to ensure robustness and
prevent minor variations in real-world parameters from
drastically altering the robot's behavior, ensuring that the
simulation remains robust and accurate. Simulations are
conducted in real-world scenarios to accurately predict a
robot's behavior across various tasks and conditions.
These tests validate the robustness of time-varying
parameters like joint acceleration or torque, making the
simulation more reliable and generalizable to various
real-world applications. This ensures the robot's ability to
adapt to changing conditions and handle different tasks.

Machine learning techniques enhance the accuracy of
simulation models by adjusting robot parameters based
on past experiences or real-world task execution. Over
time, these models become more accurate, narrowing the
gap between simulated predictions and real-world
performance, thus validating simulations. Sensor
feedback during task execution is crucial for validating
simulations.  High-fidelity sensors monitor robot
parameters like torque and velocity, providing real-time
data for comparison. This ensures deviations between
simulated and actual parameters are detected and
corrected, improving simulation accuracy, especially in
dynamic environments. Simulation validation in
industries like healthcare and manufacturing involves
benchmarking robot performance against safety and
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operational standards. For example, FDA regulations
require high accuracy in replicating human-like
movements, making meeting these benchmarks a critical
part of the validation process.

Metrics critical for ensuring the robots operating
efficiency: Evaluating the success of a robot’s
performance with time-varying parameters in sequential
tasks relies on a diverse set of metrics that consider
efficiency, precision, safety, adaptability, and task
completion. These metrics are critical for ensuring that
robots operate effectively in dynamic environments
where parameters such as joint torques, velocities, and
accelerations can vary over time. One of the primary
metrics is the time taken to complete a sequence of tasks.
The efficiency of the robot is measured by how quickly it
can complete tasks without errors, considering the
variability in parameters like speed and acceleration.
Shorter completion times are generally preferred, but this
must be balanced with accuracy and safety considerations
(Matteo et al., 2021). Energy efficiency is vital in
systems that require long operational periods or
autonomous functionality. Time-varying parameters like
torque and speed directly impact the energy required. The
goal is to minimize energy consumption while
maintaining task performance, particularly in mobile and
battery-powered robots. Measuring the energy consumed
during task execution helps identify areas where
parameter optimization can reduce power usage (Navarro
et al., 2014; Goger et al., 2010; Ajoudani et al., 2017;
Villani et al., 2018)).

Accuracy is crucial for tasks that require high
levels of precision, such as manufacturing or surgery.
Metrics like the root mean square error (RMSE) between
the robot’s actual trajectory and the desired path are used
to evaluate how well the robot adapts to time-varying
conditions. High accuracy indicates that the robot is
effectively managing its parameters to follow precise
paths (Matteo, 2023). The success rate reflects the
proportion of tasks completed without failure. In complex
sequential tasks, success may depend on how well the
robot adjusts its time-varying parameters across all
stages. A higher success rate implies that the robot is
robustly managing variable parameters and executing
tasks without breakdowns or errors (Pinto et al., 2021).
Safety is critical in human-robot interaction. Force and
torque sensors monitor whether the robot is operating
within safe limits. For instance, excessive joint torque
during task execution can indicate unsafe operations,
especially in environments where robots interact with
humans. Safety metrics ensure that time-varying
parameters do not lead to hazardous conditions (Feng et
al., 2018). The robot's ability to adapt to changes in its
environment is key to success in dynamic tasks. This
adaptability is measured through metrics like the robot’s
response time to external disturbances or environmental
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changes. For example, how quickly a robot adjusts its
torque or speed when unexpected changes occur in the
task sequence (Nottensteiner, 2023). Smoothness metrics,
such as minimizing jerk (the rate of change of
acceleration), are used to evaluate the fluidity of the
robot’s motion. In tasks involving delicate operations,
smooth transitions between task stages are essential to
avoid errors or damage. Lower jerk values indicate more
stable and controlled movements, which are crucial for
sequential tasks (Khatib et al., 2019). Force and torque
metrics are critical for assessing how the robot interacts
with objects and its environment, particularly in tasks
involving physical manipulation. Monitoring these values
helps ensure that the robot does not apply excessive
force, leading to potential task failure or hardware
damage. Adjusting force and torque in real-time based on
task needs helps in efficient task handling (Pires et al.,
2021). Error rate is another important metric, measuring
how frequently the robot deviates from its intended path
or objective due to time-varying parameter mismatches.
Additionally, the system’s ability to detect and correct
these errors efficiently—without manual intervention—
ensures smooth task execution and increased reliability
(Siciliano & Khatib, 2019).

Conclusion: This review discusses a simulation
framework for modeling time-varying parameters in
robots as these do complex sequential jobs. By
incorporating dynamic equations, machine learning,
adaptive control, and sensor feedback, the simulation lets
robots to alter in real-time in response to changing
conditions/environments like terrain, varying loads, and
task significances, thus can considerably increase the
efficiency of robots in real-world applications,
contributing a flexible way out for managing multi-stage
dynamic tasks in industries like logistics and
manufacturing.
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