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ABSTRACT: To improve the performance in complex sequential chores, simulating time-varying 

parameters in robotic systems is essential. This review paper explores an advanced computational 

framework for modeling and analyzing the dynamic parameters of robots like position, torque, 

velocity, and force during sequential operations. Time-varying factors play a key role in defining the 

accuracy and efficiency of robotic tasks, specifically in environments where tasks are multi-stage, 

subject to changing conditions, and non-repetitive. The recommended simulation model incorporates 

important techniques including kinematic modeling, adaptive control algorithms, and nonlinear 

dynamic equations of motion to deliver real-time apprises on robot performance under joint friction, 

external disturbances, and varying loads. A multi-parameter time-series approach is utilized to simulate 

the unceasing interaction between robotic systems and their working environments. The model put on 

finite element analysis to simulate machine-driven deformation, and stress confirming the consistency 

of the robot’s structure during task execution. The review also includes reinforcement learning to let 

robots self-improve in real-time as tasks progress, adjusting to unexpected variables like terrain 

changes, task priorities, and fluctuating payloads. The dynamic task scheduling is controlled by 

Markov decision processes which allow well-organized switching between tasks whilst minimizing 

resource consumption and downtime. An inverse dynamics approach is engaged to compute actuator 

forces and joint torques essential for the execution of the wanted movements, allowing for real-time 

adjustments in speed and trajectory. To enhance the simulation's fidelity, sensor fusion procedures are 

applied, joining data from multiple/compound sensors e.g., gyroscopes, force/torque sensors, and 

cameras, etc. to deal with widespread feedback on the robot’s interface with its environment. This 

feedback is managed by Kalman filters to alleviate noise and offer correct apprises to the control 

system. Experiments results conducted on mobile robots and industrial robots performing tasks such as 

object manipulation, navigation, and assembly line operations through dynamic environments 

demonstrate that the simulated robots can adjust to time-varying factors with greater accuracy and less 

error margins, helping improved operational robustness and task efficiency. The usage of trajectory 

optimization algorithms in the simulation has shown a noteworthy decrease in wear on robot joints and 

energy consumption by smoothing out motion paths and preventing sudden changes in movement. 

Therefore, this review focuses on the presentation of a healthy simulation framework that efficiently 

adapts and models to the time-varying parameters of robots during complex sequential tasks.  
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INTRODUCTION 

 Accurate modeling of time-varying parameters 

like joint torques, accelerations, and velocities is crucial 

for creating accurate robotic simulations that faithfully 

mimic real-world behavior (Spong et al., 2006). These 

parameters impact the robot's accuracy, efficiency, and 

security during task performance, letting developers 

envisage and mitigate probable issues before deployment 

(Liu and Chen, 2019). Control systems as well as 

optimization methods improve the practicality and 

functionality of robotic models, confirming robots can 

become accustomed to dynamic environments with 

higher accuracy and safety. Machine-driven wear and tear 

are serious factors in the long-standing performance and 

trustworthiness of robots. Techniques like predictive 

maintenance and adaptive control help outspread the 

robot's working lifespan and increase efficiency and 

safety in long-term deployments. Time-varying 

parameters also affect a robot's adaptability to 

unpredictable and complex task sequences, augmenting 

the reliability and flexibility in complex and 

unpredictable applications. 

 Managing sequential dependencies between 

tasks requires tactics i.e. hierarchical task planning, pre-

and post-condition modeling, reinforcement learning, 

task dependency graphs, dynamic task error recovery 
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mechanisms, and scheduling. These methods confirm 

reliable and efficient action in complex, changeable 

environments. Advanced control approaches, like 

adaptive control, Model Predictive Control (MPC), robust 

control, state estimation, dynamic modeling, and feed-

forward control maintain constancy despite parameter 

variations. Control algorithms that adapt to dynamic 

changes in system parameters are essential for real-time 

robotic systems. Robots use sensor feedback, adaptive 

control, control systems, machine learning algorithms, 

and fault detection systems to sense and react to 

deviancies in time-varying parameters. These 

mechanisms ensure efficiency, safety, and precision 

during task completion. Robotic simulations account for 

unpredictable or extreme differences in time-varying 

parameters, and time-varying parameter models can scale 

through diverse platforms and tasks. Simulation 

authentication for robot time-varying parameters includes 

physical model testing, real-world data assessment, 

scenario testing, sensitivity analysis, machine learning, 

benchmarking, and real-time feedback. The 

accomplishment of a robot's performance in handling 

serial tasks with time-varying parameters can be 

evaluated through metrics like accuracy, task completion 

time, energy consumption, adaptability, and safety. Joint 

torque is the rotational force exerted on a robot's joints 

during movement, influenced by factors like 

configuration, payload, and frictional forces. Robotic 

simulations use dynamic models, such as Newtonian 

mechanics or the Lagrangian approach, to accurately 

model joint torques. Real-time adjustments to joint torque 

are required, often using PID control systems, to ensure 

safe operational limits in safety-critical applications like 

manufacturing and healthcare. Accelerations and 

velocities are key parameters in robot motion, used in 

simulations to accurately model their speed and rate of 

change. These parameters are crucial for high-speed 

robotic applications, such as pick-and-place tasks in 

industrial settings. Realistic simulations ensure constant 

monitoring and adjustment of these parameters to 

maintain stability and precision. Excessive acceleration 

can lead to mechanical wear and tear, making it essential 

to model limits to prevent damage or operational 

inefficiency. Robotic simulations face challenges in 

continuously adjusting time-varying parameters during 

task execution. Real-time feedback and control systems, 

like MPC, optimize joint torques, velocities, and 

accelerations. These methods minimize energy 

consumption, improve task efficiency, and extend the 

robot's lifespan. By integrating real-time adaptation and 

optimization, developers can fine-tune parameters for 

safer and more efficient robot operation. 

Methods for Accounting for Mechanical Wear and 

Tear: To maintain the efficiency and longevity of 

machinery/robots methods for accounting for mechanical 

wear and tear play a critical role. One of the common 

methods used is depreciation accounting, where the cost 

of equipment is gradually written off over its useful life, 

reflecting the predictable wear and tear. Techniques like 

accelerated depreciation or straight-line depreciation 

methods, i.e. double-declining balance, can be applied 

depending on how speedily the equipment is estimated to 

damage. Moreover, condition-based monitoring is 

assisted by regularly judging the machinery's 

efficacy/performance and/or condition to envisage 

whether mechanical wear or repair substitutes are desired. 

Predictive maintenance influences sensors to forecast and 

data analytics, leading to timely interferences. This 

arrangement of proactive maintenance strategies and 

financial accounting warrants that wear and tear are 

systematically mitigated and tracked (See Table 1). 

Degradation Models: One common approach to account 

for wear and tear is through degradation models, which 

simulate the progressive deterioration of mechanical 

components. These models incorporate the effects of 

fatigue, friction, and material degradation into the 

simulation. For instance, fatigue-based models use 

historical data on component failure rates to predict the 

lifespan and efficiency loss of parts such as motors and 

gears (Jardine et al., 2006). These models allow 

engineers to estimate how much wear a robot's joints or 

actuators can withstand before performance begins to 

deteriorate significantly. 

Friction and Stiction Models: As mechanical 

components degrade, frictional forces within joints and 

between moving parts tend to increase, which directly 

impacts the accuracy of a robot’s movements. Friction 

models, such as the Coulomb and viscous friction 

models, simulate the increase in resistance over time due 

to wear. Similarly, stiction (static friction) models 

account for the higher resistance encountered when 

starting motion from rest. These friction models are 

integrated into the robot’s dynamic equations to adjust 

parameters like joint torque and velocity to reflect the 

additional energy required to overcome increased friction 

(Canudas-de-Wit et al., 1995). 

Component Health Monitoring: Some systems 

incorporate sensors to monitor the health of critical 

components, such as encoders that track the wear on 

bearings or strain gauges that measure load and stress on 

joints. This real-time data is used to update the robot’s 

dynamic model and adapt to changing performance 

capabilities. For instance, as the wear increases, control 

algorithms can adjust joint torques or velocities to 

maintain consistent performance (Mobley, 2002). By 

integrating component health data into simulations, 

parameter variations due to wear can be accurately 

predicted and managed over time (See Table 1). 
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Table 1: Different methods for accounting for mechanical wear and tear in robots 

 

Method References Advantages Description Limitations 

Preventive 

Maintenance 

Hongyan et al., 

2023 

Decreases sudden 

downtime and 

breakdowns. 

Scheduled maintenance 

activities based on time or 

usage to avoid failures. 

This may lead to over-

maintenance and increased 

costs. 

Lubricant 

Analysis 

Acar et al., 

2020 

Detect initial signs of 

wear without 

disassembling 

components. 

Examines lubricant for 

contamination by wear particles 

to judge the state of mechanical 

components. 

Needs recurrent sampling 

and analysis; equipment-

specific. 

Condition-

Based 

Monitoring 

(CBM) 

Uhlmann et al., 

2020 

Minimizes useless 

repairs; lessens 

downtime. 

Checking real-time data to 

determine equipment situation 

and maintenance requirements. 

Requires sensors and 

continuous monitoring 

systems. 

Thermal 

Imaging 

Lintvedto., 

2023 

Non-invasive and offers 

quick results. 

Uses infrared cameras to sense 

abnormal heat arrays that show 

friction and wear in mechanical 

components. 

Needs specialized 

equipment and knowledge 

for interpretation. 

Vibration 

Analysis 

Jianlong et al., 

2022 

Effective for an initial 

finding of mechanical 

problems. 

Measures vibrations in 

components to detect signs of 

wear, misalignment, or 

imbalance. 

Requires expert analysis and 

can be sensitive to noise. 

Predictive 

Maintenance 

(PdM) 

Pookkuttath et 

al., 2022 

Reduces unplanned 

downtimes and optimizes 

resource usage. 

Utilizes data analytics and 

machine learning to predict 

when failures may occur, 

allowing for optimized 

maintenance. 

Requires extensive data 

collection and analysis 

capabilities. 

Life Cycle 

Assessment 

(LCA) 

Stuhlenmiller et 

al., 2021 

Offers widespread long-

term insights into robot 

longevity. 

Evaluate the environmental 

impact and wear over the entire 

life cycle of the robot, from 

manufacturing to disposal. 

Complex to implement and 

may need adjustments over 

time. 

Digital Twin Yao et al., 2023 

Let real-time checking 

and forecasting for 

proactive maintenance. 

An effective replica of the robot 

that simulates its wear and tear 

over time, guessing failures and 

maintenance needs. 

Complexity and high 

implementation cost. 

 

Integration into Parameter Variation: Adaptive 

control techniques are used to integrate wear and tear into 

a robot's parameter variation model. These techniques 

regulate control parameters built on real-time feedback 

and system dynamics, reimbursing for decreased 

efficiency. Predicting maintenance algorithms utilize 

sensor data to envisage component failure, leading to 

maintenance scheduling before significant performance 

breakdown or loss. Probabilistic models, like the 

Bayesian framework, capture ambiguity in wear 

development, permitting more accurate predictions of 

when wear will significantly affect the robot's operations. 

Task Complexity and Sequential Planning: Time-

varying parameters such as joint torques, accelerations, 

velocities, and external forces play a vital role in defining 

a robot’s capability to adjust to unpredictable and 

complex task sequences. These parameters dynamically 

change during a robot's operation, particularly when it 

interrelates with changing environments or performs 

multi-step tasks (See Table 2). How well a robot can grip 

these time-varying situations directly affects its 

adaptability, overall performance, and precision in real-

time, especially in tasks that need a high degree of 

flexibility and responsiveness. Robotics are equipped 

with various parameters to ensure their performance in 

various tasks. Joint torque, a crucial parameter, 

determines the force applied by each joint to perform 

tasks. In unpredictable environments, the robot must 

adjust its torque to maintain stability and accuracy. 

Adaptive controllers like Model Reference Adaptive 

Control (MRAC) can modify torque in real time based on 

task demands, enabling the robot to dynamically handle 

unpredictable tasks. Velocity is another critical 

parameter, affecting the robot's ability to adapt. It must 

vary its speed in response to task complexity or 

environmental conditions. Time-varying velocity control 

allows robots to switch between high-speed and high-
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precision modes based on the task sequence. Failure to 

adapt velocity can result in inefficient operation or errors 

in delicate procedures, negatively impacting the robot's 

overall task adaptability. Acceleration also plays a role, 

directly impacting a robot's ability to maintain balance 

and stability while performing complex tasks. Time-

varying control of acceleration ensures the robot adapts 

fluidly to the unpredictable aspects of the task, 

maintaining safety and accuracy. 

Role in Handling Unpredictable Task Sequences: 
Time-varying parameters in robots empower them to 

handle random task sequences, letting them adjust 

dynamically to innovative information. These 

considerations are essential in dynamic environments, 

specifically in human-robot collaboration, where the 

robot's capability to adjust its behavior in answer to 

changeable inputs is needed for safe and effectual 

cooperation. The capability to cope with successive needs 

between tasks is critical in robotics and further fields 

where composite, multi-step operations are completed. 

Careful planning, as well as performance, are compulsory 

to confirm each task is completed in the correct order and 

any variations in one task are accounted for in subsequent 

ones. Several strategies are employed to optimize 

efficiency and reliability, often used in tandem. 

Hierarchical Task Planning: Hierarchical task planning 

is a common strategy for breaking down tasks into sub-

tasks with dependencies mapped in a top-down structure. 

This method breaks down high-level goals into 

manageable actions, organized according to their 

dependencies. For example, in assembly-line robots, each 

stage depends on the previous one's completion. This 

helps robots or systems execute steps correctly, manage 

dependencies, and trace and adjust sequences based on 

outcomes from earlier tasks. 

Pre- and Post-Condition Modeling: Pre- and post-

condition modeling is a technique that defines the 

conditions required before and after a task, ensuring that 

outcomes match prerequisites for the next task. This 

approach helps dynamically assess task readiness, 

preventing premature execution and potential failure. It 

ensures logical and accurate handling of dependencies, 

allowing early detection of errors or inconsistencies. For 

example, in industrial robotics, successful positioning of 

a part requires pre-condition satisfaction for task B to 

begin. 

Task Dependency Graphs: A task dependency graph 

makes it simple to identify essential paths and possible 

bottlenecks by providing a visual depiction of the 

sequential links between jobs. It is especially helpful in 

intricate systems like driverless cars, where there are 

several interdependent jobs, such as city navigation. This 

organized representation guarantees effective functioning 

and aids in the management of related duties. 

Reinforcement Learning for Sequential Tasks: 

Reinforcement learning (RL) is a strategy that helps 

robots and systems learn the optimal sequence of actions 

through trial and error. It adapts to changing 

environments and handles dependencies dynamically. RL 

is particularly effective when dependencies between tasks 

are not explicitly known or highly variable. For example, 

in robotic manipulation, RL optimizes the robot's 

performance by continuously learning from task 

outcomes, ensuring successful task completion and 

optimal performance. 

Dynamic Task Scheduling: Dynamic task scheduling is 

a real-time method that adjusts task execution based on 

the system's state and environment, ensuring system 

efficiency. It's crucial for tasks with varying durations or 

unexpected delays. In human-robot collaboration, helps 

robots adjust task sequences based on worker pace or 

material availability, ensuring flexibility and 

responsiveness to complex task dependencies. 

Error Recovery Mechanisms: Error recovery 
mechanisms are crucial for managing sequential task 
dependencies. They allow a system to retry, adjust 
subsequent tasks, or recover from errors without 
disrupting the overall sequence. This mitigates risks 
associated with task dependencies and prevents cascading 
failures. For instance, in surgical robots, error recovery 
mechanisms compensate for deviations in outcomes by 
adjusting subsequent actions to compensate for the 
variation.  

Stability and Control: Ensuring system stability when 

time-varying parameters, such as mass or center of 

gravity (CoG), change during a task is a crucial aspect of 

robotic control and dynamic systems. These parameters 

can shift due to various factors like load variations, 

environmental interactions, or internal changes within the 

system itself. Managing such changes requires advanced 

control strategies to prevent instability and ensure the 

robot can continue to operate safely and effectively. 

Here are several approaches used to ensure stability 

in the presence of time-varying parameters: 

Adaptive Control: Adaptive control is a real-time 

method used to handle system parameters like mass and 

CoG in industrial robots. It continuously monitors 

performance and adjusts control laws to compensate for 

changes. Adaptive controllers adjust torque and force 

inputs based on changes in mass and CoG, maintaining 

stable operation. This method is particularly useful in 

robotic manipulators where mass distribution can shift. 
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Table 2: Role of Time-Varying Parameters in Handling Unpredictable Task Sequences. 

 

Time-Varying 

Parameter 

Researchers 
Explanation 

Role in Handling Unpredictable 

Task Sequences 

Speed Adaptation 

Galvan-Perez 

et al. (2023) 

Robots can slow down for complex, delicate 

tasks and speed up for simpler, urgent tasks to 

optimize performance. 

Adjusts speed dynamically to 

respond to changes in task difficulty 

or urgency. 

Force Control 

MacDonald et 

al. (2024) 

Robots adapt their grip force when handling 

fragile or complex items, increasing safety and 

precision. 

Modifies applied force based on the 

object's properties and task 

requirements. 

Learning Rate in 

ML Algorithms 

Wang, et al. 

(2015) 

Time-varying learning rates in machine 

learning algorithms allow robots to learn faster 

or slower, based on the task dynamics. 

Changes the learning rate to enable 

quicker adaptation to task 

variability. 

Sensor Fusion 

Weighting 

Zhang & Wei, 

(2013) 

When critical sensors (e.g., vision or touch) 

become more important in a task, robots give 

higher weight to their inputs. 

Dynamically adjusts the importance 

of sensory input based on 

environmental changes. 

Task 

Prioritization 

Somani et al. 

(2016) 

Robots can reorder tasks dynamically based on 

emerging needs or changes in task sequences, 

ensuring critical tasks are prioritized. 

Changes task priority in real-time, 

depending on the task or 

environment. 

Energy 

Management 

Nonoyama et 

al. (2022) 

Robots can conserve energy during low-

intensity tasks and increase output during high-

demand tasks to ensure efficiency. 

Regulates energy use to balance 

consumption and performance in 

varying tasks. 

Control Gains 

Yue et al., 

(2024) 

Modifying control gains dynamically helps 

robots remain stable when faced with 

unexpected disturbances or changes in tasks. 

Adjusts control parameters to 

maintain stability during 

unpredictable conditions. 

 

Robust Control: Robust control is a method that ensures 

stability despite uncertainties or variations in system 

parameters. It handles a predefined range of parameter 

variations without real-time updates, ensuring stability 

even when parameters like mass or CoG change. This 

technique is commonly applied in systems with 

predictable time-varying parameters, such as autonomous 

vehicles or drones navigating dynamic environments. 

MPC: MPC is a strategy that maintains system stability 

in complex, multi-task operations. It predicts future 

system behavior based on a dynamic model and adjusts 

control actions accordingly. MPC is particularly useful in 

robotic arms, where parameter variations are frequent. By 

continuously updating its model, MPC calculates optimal 

control actions to stabilize the robot's movement amidst 

these changes. 

State Estimation Techniques: Accurate state estimation 

is crucial for maintaining stability in time-varying 

parameters. Techniques like the Kalman filter or 

extended Kalman filter (EKF) estimate internal states like 

mass and CoG, allowing real-time control strategies. For 

legged robots, state estimation helps predict and adjust 

posture to maintain balance and stability during 

movement, ensuring stability. 

Feedforward Control: Feedforward control is a method 

that anticipates changes in time-varying parameters and 

adjusts the system's control actions accordingly. It uses 

predictive models to proactively adjust control inputs, 

allowing for system stabilization before instability 

occurs. For example, in robotic arms, feed-forward 

control can adjust motor torques in anticipation of mass 

changes, preventing instability or oscillations. 

Dynamic Modeling and Parameter Identification: 

Accurate dynamic models, including mass, CoG, joint 

torques, and external forces, are crucial for robot 

stability. Continuous parameter identification methods 

update the robot's internal model in real time, allowing 

the control system to anticipate and correct potential 

instability. For surgical robots, continuous monitoring 

and model updating ensure precise, stable performance 

by adapting to time-varying forces and dynamics. 

Fuzzy Logic and Artificial Neural Networks: Fuzzy 

logic and artificial neural networks (ANNs) are effective 

in handling non-linear and uncertain time-varying 

parameters in robotic systems. Fuzzy logic controllers use 

approximate reasoning, while ANNs learn from 

experience and adjust control actions based on complex 

relationships between system states and parameters. 

These approaches ensure stability by learning and 

adapting over time. 

Energy-based Stability Criteria: In some systems, 

ensuring stability relies on maintaining a consistent 

energy balance. Techniques like the Lyapunov stability 

criterion are used to guarantee that the total energy of the 
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system remains bounded despite variations in time-

varying parameters. By designing controllers that ensure 

the system's energy dissipates or remains within safe 

limits, these methods provide a mathematical guarantee 

of stability, even as parameters like mass or CoG 

fluctuate (Haddad et al., 2006). 

4- Optimization and Performance: Optimizing time-

varying parameters in robots, such as joint torques, 

velocities, and accelerations, is crucial for minimizing 

task completion time while ensuring energy efficiency 

and precision. Achieving this balance involves a 

combination of real-time control algorithms, advanced 

optimization techniques, and physical models of the 

robot's dynamics. Here's how these time-varying 

parameters are optimized: 

Trajectory Optimization: One of the most effective 

methods for minimizing task completion time and 

optimizing energy efficiency is trajectory optimization. 

This involves determining the optimal path that the robot 

should follow to complete a task while accounting for the 

robot's kinematic and dynamic constraints. The time-

optimal Trajectory Planning method minimizes the time 

required to move from one point to another while 

respecting the robot’s dynamic limits, such as maximum 

velocity and acceleration. Time-optimal trajectories push 

the robot's joints and actuators to their limits, reducing 

overall task time but still adhering to safety constraints 

(Bry & Roy, 2011). The energy-efficient Trajectory 

Planning approach minimizes energy consumption during 

the task. Energy-efficient trajectories avoid high-speed or 

abrupt movements, which consume more power. 

Optimizing energy can involve selecting paths that 

reduce joint torques or resistive forces (Knöchelmann et 

al., 2020). In industrial robots, optimal joint trajectories 

are calculated by minimizing a cost function that 

combines time, energy, and torque constraints. The goal 

is to maintain precise movements while completing tasks 

as quickly and efficiently as possible. 

MPC: MPC is a powerful real-time control algorithm 

that optimizes time-varying parameters dynamically. 

MPC uses a predictive model of the robot's dynamics to 

calculate the optimal control inputs at each time step, 

minimizing task time and energy consumption. MPC 

continuously predicts the future states of the robot based 

on its current time-varying parameters (such as position 

and velocity) and adjusts the control inputs to minimize 

task completion time. MPC can incorporate energy 

consumption as part of the optimization problem by 

adding energy-related terms to the cost function. For 

example, it can prioritize minimizing the integral of 

power consumption over the tasking horizon (Qin & 

Badgwell, 2003) i.e. in mobile robots, MPC can be used 

to optimize paths and speed while considering battery 

consumption, minimizing both task time and energy 

usage Braunl, (2012).  

Multi-Objective Optimization: Multi-objective 

optimization techniques address the trade-off between 

minimizing task completion time, energy efficiency, and 

precision by optimizing multiple criteria simultaneously. 

These methods use Pareto frontiers to explore the best 

balance between conflicting objectives. Multi-objective 

optimization generates a set of solutions (Pareto-optimal 

solutions), where improving one objective (e.g., task 

completion time) results in sacrificing another (e.g., 

energy consumption or precision). This allows the 

operator or control system to choose the most appropriate 

solution based on current operational requirements (Deb 

et al., 2002). Genetic algorithms are often used in multi-

objective optimization, as they can explore a large search 

space and provide a set of optimal solutions by 

mimicking biological evolution (Srinivas & Deb, 1994), 

i.e. in robotic surgery, multi-objective optimization is 

used to ensure precision in tool movements while 

minimizing energy consumption and time spent during a 

procedure. 

Adaptive Control and Learning-Based Methods: 

Adaptive control systems continuously adjust the robot's 

parameters based on real-time feedback to optimize 

performance for specific tasks. These systems can 

account for changes in the robot's dynamics, 

environment, or task complexity. Adaptive controllers 

adjust joint torques and velocities in real-time, learning 

from the task's execution to reduce energy consumption. 

These systems can optimize movements by reducing 

unnecessary accelerations and decelerations. 

Reinforcement learning algorithms allow robots to learn 

optimal strategies for minimizing task completion time 

and energy use through trial and error. These algorithms 

adjust control parameters based on feedback from the 

environment, allowing robots to improve efficiency over 

time (Kober et al., 2013), i.e. in manufacturing, adaptive 

controllers can dynamically adjust a robotic arm’s speed 

and force to minimize energy use without sacrificing 

precision (Xu, 2007). 

Dynamic Programming: Dynamic programming is an 

optimization method that divides a complex task into 

smaller sub-problems and solves each one optimally (Xu, 

2007). It’s particularly useful for optimizing time-varying 

parameters over a sequence of movements or tasks. 

Bellman’s Principle of Optimality principle is applied in 

dynamic programming, where the overall task is 

optimized by finding the best decisions at each step. The 

robot’s joint angles, velocities, and accelerations are 

optimized to reduce task time and energy use step-by-step 

(Bellman, 1957). Dynamic programming can be used to 

solve optimal control problems where the robot’s entire 

movement is planned to minimize energy consumption 
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and time across all steps of the task, i.e. in robotic pick-

and-place tasks, dynamic programming can be used to 

optimize joint angles and velocities to ensure the fastest 

possible movement with minimal energy use. 

Fuzzy Logic and Heuristics: Fuzzy logic and heuristic 

methods can be used to fine-tune time-varying 

parameters when dealing with uncertain or imprecise 

conditions. These methods are particularly useful when 

it's difficult to model the system exactly or when human-

like reasoning is required. Fuzzy logic controllers make 

decisions based on imprecise or fuzzy inputs (e.g., 

approximate positions or velocities). These controllers 

can adjust the robot's parameters to balance between 

speed, energy efficiency, and precision, especially in 

unstructured environments (Zadeh, 1965). Heuristic 

algorithms, such as particle swarm optimization, are often 

used to find near-optimal solutions quickly. These 

algorithms are effective in high-dimensional problems, 

such as optimizing time-varying parameters across 

multiple joints and tasks, i.e. in healthcare robotics, fuzzy 

logic may be used to control a robot’s joint angles and 

force to maintain both speed and safety when interacting 

with patients. 

Task-Specific Optimizations: In some cases, robots 

perform highly specialized tasks that require fine-tuning 

of specific time-varying parameters. For example, a 

welding robot needs to adjust its path, speed, and heat 

application for precise and efficient welds. In tasks such 

as robotic painting or welding, optimizing the robot's path 

and velocity in real time ensures both precision and 

energy efficiency. The system continuously adjusts the 

speed and angle of the tool to achieve the best coverage 

with the least energy expenditure, i.e. in robotic painting, 

optimizing the speed and path of the arm minimizes paint 

waste, energy consumption, and task completion time. 

Learning and Adaptability: Machine learning 

techniques can be used to predict and optimize time-

varying parameters in complex tasks by leveraging vast 

amounts of real-time data generated by robots. 

Reinforcement learning (RL) is a key approach, where 

robots learn optimal actions through trial and error, 

receiving feedback in the form of rewards or penalties 

based on their performance. This allows the robot to 

adjust parameters dynamically to changing conditions or 

unexpected challenges. Supervised learning uses 

historical data from past tasks to train models that predict 

how time-varying parameters will evolve under different 

conditions. Deep learning algorithms analyze large 

datasets to identify patterns in the robot's performance, 

allowing for real-time optimization of parameters. 

Transfer learning allows robots to apply knowledge 

gained from one task to optimize performance in related 

tasks, reducing training time. By integrating these 

machine learning techniques, robots can continuously 

optimize their performance, reduce errors, and adapt their 

behavior in complex, dynamic environments. Imitation 

learning allows robots to learn from expert 

demonstrations, adjusting their parameters based on 

successful task completions and adapting to new tasks 

that share similarities with past experiences. Transfer 

learning further extends this by enabling robots to 

transfer knowledge from one task to another, allowing 

them to adjust their parameters more efficiently in new 

but related tasks. 

Error Handling and Recovery: When task errors or 

interruptions occur, robots adjust their time-varying 

parameters, such as joint torques, velocities, and 

accelerations, using a combination of real-time feedback 

control, adaptive control algorithms, and error recovery 

strategies. These mechanisms allow the robot to adapt 

and compensate for deviations from the desired task 

trajectory. Robots often use feedback control loops, such 

as Proportional-Integral-Derivative (PID) controllers, to 

continuously monitor task execution. If an error or 

interruption is detected, the controller adjusts parameters 

like velocity or torque to correct the error in real-time. 

For instance, if a robot's arm encounters unexpected 

resistance while moving, the feedback system will 

modify the applied torque to maintain stability and 

prevent damage (Franklin & Powell, 2014). In more 

complex environments, adaptive control is used to handle 

changes in system dynamics caused by errors or task 

interruptions. Adaptive control systems can automatically 

tune the robot’s parameters by estimating unknown 

variables, such as changes in the robot's mass or center of 

gravity, during the task. This helps the robot to adapt on 

the fly and continue the task despite disturbances 

(Ioannou & Sun, 2012). MPC systems use a dynamic 

model of the robot to predict future states based on 

current conditions. When errors or interruptions occur, 

MPC recalculates the optimal control inputs to adjust the 

time-varying parameters and guide the robot back to the 

desired trajectory, minimizing delays or further errors 

(Mayne, 2014). Machine Learning-Based Adjustment: In 

advanced systems, machine learning algorithms may be 

employed to predict the occurrence of errors and adjust 

parameters accordingly. For example, reinforcement 

learning algorithms can learn from past task executions, 

enabling the robot to autonomously adjust parameters 

when similar errors occur in the future (Kober et al., 

2013). In this way, the robot gradually improves its 

resilience to interruptions and errors. In all these 

methods, ensuring the system's stability while adjusting 

parameters is critical. This involves balancing speed and 

precision while also considering safety factors, 

particularly in tasks where human-robot collaboration is 

involved. 

Communication and Data Fusion: Multiple sensors in 

systems provide feedback, requiring data fusion from 
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various sources. Techniques like Kalman filtering 

combine data from sensors to provide more accurate 

estimates. Sensor data is crucial for adjusting parameters 

during task execution, ensuring optimal performance and 

safety in dynamic environments. Sensors continuously 

monitor internal and external conditions, allowing real-

time adjustments to key parameters, enhancing precision, 

adapting to changes, and maintaining system stability. 

Sensors like encoders, accelerometers, and gyroscopes 

provide continuous real-time data about the robot's 

positions, velocities, and forces. This data allows the 

control system to adjust parameters to ensure that the 

robot follows the desired trajectory and meets 

performance goals. For example, joint torque sensors 

help regulate the force applied to specific components, 

ensuring smooth motion even in unpredictable 

environments (Mayne, 2014). Sensor data enables the 

detection of errors or deviations from expected behaviors 

during task execution. For example, if the robot 

encounters unexpected resistance, force sensors detect 

this, and the control system adjusts torque to prevent 

mechanical damage or task failure. Control algorithms 

like PID (Proportional-Integral-Derivative) or MPC use 

sensor data to minimize errors and correct deviations 

(Chinnappa, 2023). In complex environments, adaptive 

control strategies based on sensor feedback allow robots 

to adjust to time-varying parameters in real time. For 

instance, when lifting objects of varying weight, force 

sensors measure the load, and the robot adapts its grip 

strength accordingly to avoid slippage or damage (Craig, 

2018). Adaptive control algorithms can modulate the 

joint velocities and torques dynamically to maintain 

stability and accuracy in performing tasks (Rudomanenko 

et al., 2021). In human-robot collaboration (HRC) 

settings, proximity sensors, vision systems, and force 

sensors play a key role in preventing accidents. Sensor 

data ensures that the robot maintains safe distances from 

humans or other obstacles. If sensors detect an impending 

collision, the robot can instantaneously reduce speed, 

adjust force, or stop altogether to ensure safety (Navarro 

et al., 2014; Göger et al., 2010; Ajoudani et al., 2017; 

Villani et al., 2018). Long-term use of robotic systems 

leads to wear and tear in mechanical components. Sensor 

data can detect changes in performance due to this wear, 

such as increased friction in joints or decreased accuracy 

in motion. By monitoring these deviations, control 

systems adjust time-varying parameters like torque to 

compensate for degradation, extending the robot's 

operational life (Isermann, 2006). 

Robustness and Scalability: The robustness of 

simulations in addressing unpredictable time-varying 

parameters depends on the quality and 

comprehensiveness of models, algorithms, and scenarios 

used. Modern robotic simulations, particularly those 

involving joint torques, velocities, and accelerations, use 

advanced methods to account for uncertainties and adapt 

to unforeseen changes. In simulations where extreme 

variations in parameters can occur, probabilistic or 

stochastic models are often employed. These models 

account for random variations in forces, torques, or 

environmental factors. By introducing randomness into 

the simulations, the system’s behavior under rare or 

unpredictable conditions is tested more thoroughly. 

Monte Carlo simulations, for instance, use a large number 

of random samples to estimate the effects of 

unpredictable variations (Tedrake Russ, 2023). Robust 

simulations use adaptive control strategies that modify 

the robot’s behavior in real-time as variations occur. 

Algorithms such as MPC or Reinforcement Learning-

based controllers adjust the robot's movements and 

parameters dynamically, allowing the robot to react to 

unexpected conditions like sudden load changes or shifts 

in the center of gravity. These adaptive algorithms help 

the robot handle extreme variations with greater precision 

and stability (Chen and `11`Astolfi, 2021). 

 In some scenarios, simulations are designed to 

stress-test robots by subjecting them to extreme 

variations in parameters beyond normal operating 

conditions. These include simulating sudden and 

unpredictable shifts in joint forces, temperature extremes, 

or abrupt mechanical changes due to wear and tear. This 

allows engineers to identify weak points in the system 

and improve the robot’s tolerance for such extreme 

conditions. Environmental stress testing is crucial for 

environments like space exploration or hazardous 

industrial tasks (Milecki and Nowak. 2023). Simulations 

that integrate real-time sensor data can adapt to extreme 

changes more effectively. Sensor data allows the 

simulation to adjust key parameters—such as velocity or 

acceleration—on the fly. The inclusion of realistic sensor 

noise or delays in these simulations ensures that the 

models reflect real-world challenges. In more advanced 

systems, simulations with real-time feedback loops from 

sensors can detect outliers in time-varying parameters 

and compensate in real time, increasing the robustness of 

the model (Rudomanenko et al., 2021). In the event of 

extreme variations causing subsystem failures (e.g., 

motor breakdowns or joint malfunctions), fault-tolerant 

control strategies are built into the simulations. These 

systems allow the robot to continue functioning by 

isolating the failure and compensating with operational 

components. Redundant systems or software-based fault 

detection algorithms are often included to ensure that 

even in extreme cases, the system can maintain some 

level of performance (Isermann, 2006). Simulations are 

used to test the robustness of robots' time-varying 

parameter control, exposing them to sudden changes in 

torque or speed without losing stability. These 

simulations expose the robot to various tasks and 

platforms, ensuring it can adjust appropriately without 

losing stability. The scalability of these models is a 
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complex challenge but can be achieved with appropriate 

modeling strategies and adaptation mechanisms. Scaling 

these models requires accounting for differences in the 

robot's physical structure, task complexity, and 

environmental factors. 

Validation and Testing: Validating simulations is 

crucial for ensuring robots' time-varying parameters, such 

as joint torques, velocities, accelerations, and dynamic 

properties, behave as expected in real-world tasks. This 

process involves comparison with real-world data, 

performance evaluation, and systematic testing under 

varying conditions. Robotic simulations are validated by 

comparing simulated behavior with real-world 

experimental data. This involves running the robot 

through tasks in both real and simulated environments 

and collecting data on critical parameters like joint 

angles, velocities, and forces. The simulation is adjusted 

to minimize discrepancies between simulated and actual 

values. High-fidelity sensors on the physical robot 

capture real-time data, comparing predicted outputs to 

actual behavior. Hardware-in-the-loop (HIL) simulations 

use physical models to validate a robot's dynamic 

properties in real-time scenarios. HIL tests a portion of 

the robot's hardware, such as actuators or sensors, while 

simulated parts are tested. This hybrid approach identifies 

any mismatches between simulation assumptions and 

physical behavior due to factors like mechanical wear or 

environmental changes. Simulation validation involves 

sensitivity analysis on time-varying parameters, such as 

mass, friction, or stiffness, to ensure robustness and 

prevent minor variations in real-world parameters from 

drastically altering the robot's behavior, ensuring that the 

simulation remains robust and accurate. Simulations are 

conducted in real-world scenarios to accurately predict a 

robot's behavior across various tasks and conditions. 

These tests validate the robustness of time-varying 

parameters like joint acceleration or torque, making the 

simulation more reliable and generalizable to various 

real-world applications. This ensures the robot's ability to 

adapt to changing conditions and handle different tasks. 

Machine learning techniques enhance the accuracy of 

simulation models by adjusting robot parameters based 

on past experiences or real-world task execution. Over 

time, these models become more accurate, narrowing the 

gap between simulated predictions and real-world 

performance, thus validating simulations. Sensor 

feedback during task execution is crucial for validating 

simulations. High-fidelity sensors monitor robot 

parameters like torque and velocity, providing real-time 

data for comparison. This ensures deviations between 

simulated and actual parameters are detected and 

corrected, improving simulation accuracy, especially in 

dynamic environments. Simulation validation in 

industries like healthcare and manufacturing involves 

benchmarking robot performance against safety and 

operational standards. For example, FDA regulations 

require high accuracy in replicating human-like 

movements, making meeting these benchmarks a critical 

part of the validation process. 

Metrics critical for ensuring the robots operating 

efficiency: Evaluating the success of a robot’s 

performance with time-varying parameters in sequential 

tasks relies on a diverse set of metrics that consider 

efficiency, precision, safety, adaptability, and task 

completion. These metrics are critical for ensuring that 

robots operate effectively in dynamic environments 

where parameters such as joint torques, velocities, and 

accelerations can vary over time. One of the primary 

metrics is the time taken to complete a sequence of tasks. 

The efficiency of the robot is measured by how quickly it 

can complete tasks without errors, considering the 

variability in parameters like speed and acceleration. 

Shorter completion times are generally preferred, but this 

must be balanced with accuracy and safety considerations 

(Matteo et al., 2021). Energy efficiency is vital in 

systems that require long operational periods or 

autonomous functionality. Time-varying parameters like 

torque and speed directly impact the energy required. The 

goal is to minimize energy consumption while 

maintaining task performance, particularly in mobile and 

battery-powered robots. Measuring the energy consumed 

during task execution helps identify areas where 

parameter optimization can reduce power usage (Navarro 

et al., 2014; Göger et al., 2010; Ajoudani et al., 2017; 

Villani et al., 2018)). 

 Accuracy is crucial for tasks that require high 

levels of precision, such as manufacturing or surgery. 

Metrics like the root mean square error (RMSE) between 

the robot’s actual trajectory and the desired path are used 

to evaluate how well the robot adapts to time-varying 

conditions. High accuracy indicates that the robot is 

effectively managing its parameters to follow precise 

paths (Matteo, 2023). The success rate reflects the 

proportion of tasks completed without failure. In complex 

sequential tasks, success may depend on how well the 

robot adjusts its time-varying parameters across all 

stages. A higher success rate implies that the robot is 

robustly managing variable parameters and executing 

tasks without breakdowns or errors (Pinto et al., 2021). 

Safety is critical in human-robot interaction. Force and 

torque sensors monitor whether the robot is operating 

within safe limits. For instance, excessive joint torque 

during task execution can indicate unsafe operations, 

especially in environments where robots interact with 

humans. Safety metrics ensure that time-varying 

parameters do not lead to hazardous conditions (Feng et 

al., 2018). The robot's ability to adapt to changes in its 

environment is key to success in dynamic tasks. This 

adaptability is measured through metrics like the robot’s 

response time to external disturbances or environmental 
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changes. For example, how quickly a robot adjusts its 

torque or speed when unexpected changes occur in the 

task sequence (Nottensteiner, 2023). Smoothness metrics, 

such as minimizing jerk (the rate of change of 

acceleration), are used to evaluate the fluidity of the 

robot’s motion. In tasks involving delicate operations, 

smooth transitions between task stages are essential to 

avoid errors or damage. Lower jerk values indicate more 

stable and controlled movements, which are crucial for 

sequential tasks (Khatib et al., 2019). Force and torque 

metrics are critical for assessing how the robot interacts 

with objects and its environment, particularly in tasks 

involving physical manipulation. Monitoring these values 

helps ensure that the robot does not apply excessive 

force, leading to potential task failure or hardware 

damage. Adjusting force and torque in real-time based on 

task needs helps in efficient task handling (Pires et al., 

2021). Error rate is another important metric, measuring 

how frequently the robot deviates from its intended path 

or objective due to time-varying parameter mismatches. 

Additionally, the system’s ability to detect and correct 

these errors efficiently—without manual intervention—

ensures smooth task execution and increased reliability 

(Siciliano & Khatib, 2019). 

Conclusion: This review discusses a simulation 

framework for modeling time-varying parameters in 

robots as these do complex sequential jobs. By 

incorporating dynamic equations, machine learning, 

adaptive control, and sensor feedback, the simulation lets 

robots to alter in real-time in response to changing 

conditions/environments like terrain, varying loads, and 

task significances, thus can considerably increase the 

efficiency of robots in real-world applications, 

contributing a flexible way out for managing multi-stage 

dynamic tasks in industries like logistics and 

manufacturing. 
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