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Abstract 

The problem of the boundary in algorithmic learning that has preoccupied scholarly and 
practical discussion since the inception of generative AI platforms such as ChatGPT and 
GitHub Copilot seems to be drifting into the past. In this paper, the study conceptually 
examines the issue of tool-augmented environments by addressing the choice and degree 
to which students can bypass the kind of cognitive challenge that in the past was required 
to achieve the sophistication in recursive logic, complexity analysis or optimization 
strategies. The introduction to the paper shifts the narrative of AI negatively by 
conceptualizing a pedagogical re-imagination where AI would not be positioned as an 
existential threat, but as a co-reasoning partner instead. Divide and Conquer, Sorting, 
Space and Time Complexity, Dynamic Programming, and Greedy Algorithms case 
studies are provided, as well as a set of supporting educational interventions that will 
enable driving critique, reconstruction, and metacognition over time. The notions of 
recursion, fault injection, prompt engineering, and constraint-based tool design can be 
viewed as an illustrative example of how productive struggle can be maintained in AI-
assisted environments. Focused on such integration of empirical inquisition, the theory of 
learning, and design-based thinking, the paper proposes a new vision: a vision where 
automation supplements rather than replaces conceptual mastery, where algorithmic 
thinking is deeply human, critical, and creative. 

Keywords: AI-assisted learning; Algorithms pedagogy; Problem solving; Tool 
Augmented Learning; Computational thinking; Complexity analysis; Recursive 
algorithms; Dynamic programming. 
 

1. Introduction 
We’re in a moment where writing code—or even understanding how it works—is no 

longer a prerequisite for getting correct results. With tools like ChatGPT, Copilot, and 
algorithm visualizers becoming standard in students’ workflows, many can bypass the 
slow, frustrating steps of learning to design or debug algorithms altogether. That might 
sound like a win. But it raises a serious question: what happens when students stop 
struggling with the material? In the past, the effort to understand  
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recursive calls, optimizing for time, or structure divide-and-conquer strategies 
wasn’t just about getting the right answer; it was where real learning actually happened. 
Algorithmic thinking was built through discomfort and struggle. And when AI fills in the 
gaps too early, that experience of grappling with the problem is what quietly disappears. 

This paper argues that we don’t need to abandon AI tools—but we do need to rethink 
how they’re used in algorithm education. We focus on six key areas—Divide and 
Conquer, Sorting, Time Complexity, Space Complexity, Dynamic Programming, and 
Greedy Algorithms—to explore how AI affects both what students learn and how they 
learn it. Our goal is to move beyond binary thinking—that is, whether AI is good or bad—
and instead offer concrete models that bring back productive struggle in meaningful 
ways. These include letting students critique AI-generated solutions, reconstruct broken 
logic, or compare different recursive strategies. If done well, tool-assisted learning can 
push students toward deeper understanding—not shortcut it. 

2. Literature Review 
To have an idea of the changing role of artificial intelligence in computer education, 

it is necessary to understand more than simply having a theoretical knowledge of artificial 
intelligence mathematics- one must also understand and then examine patterns, research 
methodologies and debates in computer-assisted learning. As demonstrated in the early 
[16] and today (via interactive visualizations and prompts designed by AI, the paper 
comments on both substantial progress and persistent challenges en route to aligning the 
AI technologies with meaningful outcomes. 

The foundations of computer-based problem-solving have in the past been 
underpinned by hardwired mathematical rules. [16] It is considered one of the 
cornerstones works that focus on logical methodologies suitable to solve problems called 
proper reasoning, which is a study that has advancements as a paradigm of computational 
thinking. [13] has articulated similar sentiments where they argue in favour of the 
perspective of space complexity, where there would be an academic balance between the 
limits of memory and time efficiency of our algorithms, all else being equal, which is of 
particular interest when teaching dynamic programming and recursion in depth. 
Furthermore, we have also acquired the idea of conditional teaching size because it 
informs us of the minimum of interaction needed to generalize situation-sets in the 
learning of students [11]. Although these theoretical developments can give good 
guidance on how AI-driven instruction can be beneficial, we are still struggling to 
understand how the learners actually view and understand it internally, since everyone 
learns in unique ways. 

The paper [18] pointed out that the direct answers and perfect code samples have 
deteriorated the analysis and ability of the learners to comprehend the code logic. As [14], 
[15] has identified that dpvis, a visual dynamic programming tool, only productive gains 
occurred when there was some form of visual aids incorporated alongside well-organized 
prompts. All these findings have demonstrated similar findings, by presenting that AI 
tools could provide immediate, correct responses, but not be able to do something such 
as improve a critical aspect of a learner’s ability. 

Recent research in education and AI has suggested that applying mixed 
methodology might be a good solution, integrating interactive and performance data. We 
know that [12] Provided quiet help to users through learning games or simulations, then 
analyzing the log data and conducting interviews to track their conceptual navigation. 
While these practices provide us with valuable insights, there is still a major gap in 
analyzing whether they lead to conceptual mastery and to be able to apply knowledge in 
new contexts. 

Studies have shown better results without considering the actual factor of whether 
students have actually built the ability to reason, or are they just following patterns. [20] 
mention that learners barely take on the underlying logic that AI uses to develop correct 
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and sound answers. [22] has also pointed out the lack of extensive data or primary 
research conducted on students to see how responsible they are to learn independently. 
Fixed images and questions can make students just copy instead of thinking. As [17] 
highlights, true engagement requires interaction. 

AI is redesigning the learning environments for code development, moving from 
inflexible to adaptive, tool-assisted learning. While theory and short-term studies 
encourage its use, long-term effects on cognitive reasoning are still unclear. For students 
to actually benefit from these AI tools, we need to pair them with strategies that not only 
build but also enhance critical thinking abilities. 

3. Basic Sequence for algorithms and problem-solving Curriculum in tool-augmented 
spaces 

For the teaching of algorithms in an AI-assisted environment, a reframed curricular 
arc now emphasizes conceptual labour while acknowledging the realities of tool reliance. 
This section outlines a restructured sequence for algorithm instruction, grounded in six 
interdependent areas: Divide and Conquer, Sorting, Complexity (Time and Space), 
Dynamic Programming, and Greedy Algorithms. Each of these areas is approached not 
simply as a computational method, but as a pedagogical space where automation can 
either dilute or deepen student understanding. We want to be clear: our goal is not to 
introduce abstract content in isolation, but to create opportunities for students to critically 
engage with intelligent tools instead of memorizing or passively consuming outputs. In 
the following sections, we reflect on the disappearing struggles traditionally tied to 
learning through design, and offer practical interventions—such as prompt engineering, 
fault injection, visualization, and peer-based reconstruction—to help reposition reasoning 
at the center of algorithmic learning. Together, these sections point toward an 
instructional model where conceptual understanding and intelligent tooling are not at 
odds, but co-designed to produce richer learning experiences. 

3.1. Recontextualizing Divide and Conquer in Tool-Aided Problem Solving 
Divide and Conquer (D&C) is a classic algorithmic paradigm that invites learners to 

break down a problem into smaller subproblems, solve each recursively, and then merge 
the solutions—think Merge Sort, Binary Search, or the classic closest-pair problem. When 
taught traditionally, students manually construct recursion trees, identify base and merge 
cases, and analyze stack growth. Visualization tools, paper drills, and handwritten dry 
runs build a robust mental model of recursion’s structure and behaviour. 

This can be not only cognitively intense, but also very educational when done 
correctly. For example, when students work through Merge Sort, they are not only writing 
code, they are also visualizing how the sub-arrays are merged, at what point the stack 
depth fluctuates, and where the behaviours of the runtime change. Thinking recursively 
in all contexts will foster algorithmic intuition, enabling deeper learning beyond syntax. 
This prepares students for less common techniques too, like Karatsuba multiplication or 
parallel divide and conquer scheduling [2], both of which deepen recursive reasoning and 
enable more efficient algorithmic performance. Critically, divide-and-conquer doesn’t just 
structure recursive solutions—it forms the architectural backbone of scalable parallel 
algorithms. As Blelloch illustrates in his foundational work on parallel programming, 
D&C patterns make it possible to reason about both work and depth in recursive systems, 
enabling students to transition from sequential logic to massively parallel thinking [3]. 

However, visualization alone over time was inadequate when used passively. 
Studies like Al-Thobhani et al demonstrated that when students actively created 
visualizations for recursive execution, they increased their problem-solving accuracy and 
improved their depth of thinking when compared to their peers who only viewed 
visualizations [1]. Their work highlights the pedagogical importance of constructive 
learning over passive observation. 
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Students in today's classrooms typically bypass the experience of reconstructing 
recursion. As AI tools such as ChatGPT or coded assistants create complete D&C 
implementations instantaneously, students get correct code but often without 
understanding the interaction between recursion, base cases, and merge logic. Essentially, 
the learner's role has evolved from being an architect to that of a cross between a user and 
spectator. 

To counter this and reframe D&C pedagogy, instructors must reacquire the mantle 
of critical thinking over code generation. Students could be challenged by asking 
questions like: 
1. What does the recursion tree tell us about the stack depth and spatial overhead? 
2. How would the pivot or division strategies differ in edge situations? 
3. If the merging phase fails on duplicates or skewed input, where exactly and why 

does it fail? 
Asking such questions restores cognitive tension to the task and stops blind faith in 

AI-scripted code. To illustrate this in action, below are examples of learning activities: 
1. Recursion Fault Injection: Provide an AI-generated version of Merge Sort that 

improperly handles duplicate elements (or any non-integer inputs). Students find the 
bug and correct the merging logic or base-case condition. 

2. Variations on the Divide Strategy: Give students a template D&C algorithm, and have 
them play with different divide sizes, such as using 3-way partitioning instead of 
dividing in halves, etc., and reflect on how the complexity and memory behaviour 
change. 

3. Recursion Tree Investigation: Provide an AI-generated D&C implementation of Binary 
Search or FFT. Have the students illustrate the recursion tree and annotate the usage 
of the stack in relation to the tree, and then compare it to the actual runtime output for 
N-element inputs. 

4. Collaborative Small-Group Reconstruction: Use the “Divide & Conquer” peer-teaching 
method developed by Samsa and Goller [3]. Place the students in small groups, have 
each student reconstruct a section of the recursive algorithm (divide logic, base-case, 
combine step, etc.) and then explicate it to colleagues using collaborative slides or other 
visual aids. 

Table 1. Pedagogical Shift in Divide & Conquer Strategy 

Traditional Pedagogy AI-Augmented Pedagogy Future-Oriented Practices 
Draw recursion tree 

manually 
AI generates recursive 

implementation 
Critique recursion structure 

and divide-merge logic 

Hand-coded Merge Sort Copy AI-generated Merge 
Sort 

Predict failure cases; reverse-
engineer logic 

Label base-case correctness 
by 

Accept AI’s default base-case 
choice 

Test custom base-case 
variations 

Write code from scratch Rely on templates 
Intentionally leave holes for 

student reconstruction 

Simulate recursion mentally Trust output Compare recursive runtime 
behavior with reality 

Table 2. Common AI-Generated Divide & Conquer Mistakes and Fixes 

Error Type AI-Augmented Pedagogy Future-Oriented Practices 

Missing base case Infinite recursion 
Manually add base case + 

test inputs 

Incorrect merge logic Copy AI-generated Merge 
Sort Dry-run with sample arrays 
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Stack overflow with large N Overwrites elements or fails 
on duplicates 

Test custom base-case 
variations 

Write code from scratch Recursive depth too deep Switch to tail recursion or 
iterative 

Hardcoded array sizes Poor generalization Replace constants with 
dynamic lengths 

 

  

 
(a)     (b) 

Figure 1. (a) Comparing Cognitive Load and Learning Outcomes in Manual, AI-Assisted, and 
Critique-Based Divide & Conquer Learning. (b) From Copying to Understanding: A Smarter Way 
to Learn Divide & Conquer with AI Codes. 

3.2. Reframing Sorting Algorithms for Tool-Aware Learners 
Sorting algorithms have been more than just code for execution; they provide 

learners a pathway towards computational thinking. They are designed to build deeper 
understanding, such as loops, conditionals, recursions, and memory usage. If we look at 
the brute force nature of Bubble Sort or the recursive nature of Merge Sort, we see that 
these algorithms help learners grasp time complexity, memory use as well as algorithmic 
design. 

What makes sorting such a powerful teaching tool is the way it allows learners to 
mentally simulate what code is doing, step-by-step. For example, by tracing the nested 
iterations in Selection Sort, students begin to internalize what O(n²) behaviour looks like 
in practice. With Merge Sort, they begin to see how recursive function calls translate into 
stack frames, and how local solutions are stitched into global ones. This type of internal 
modelling—where students don't just run a program but visualize and reason through its 
structure—is a crucial part of learning to think like a computer scientist. 

Research has shown that this modelling becomes more effective when learners make 
their own representations of algorithms, like making their own visualizations instead of 
watching other animations. In a Cetin and Andrews-Larson study, students who built 
their own representations of sorts of algorithms had better conceptual understanding than 
students who viewed pre-built ones. [4] This is fundamental for understanding how 
sorting pedagogy is changing in the AI era.  

In today's world, that traditional struggle to "figure out" how sorting actually works 
can almost be avoided entirely. With the emergence of AI tools like ChatGPT, GitHub 
Copilot, and LeetCode's smart code explainers, students can now generate working 
versions of Insertion Sort, Quick Sort, or even Radix Sort, with a single prompt. The output 
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is often not only syntactically correct, but also neat, optimized and described. What would 
take students hours of consideration and debugging can now be served up in seconds, 
and while this productivity gain is certainly helpful, it creates a very different relationship 
to the material for that student. Instead of understanding the "why" and "how" behind the 
logic, students risk understanding only the "what." 

This shift turns students from problem solvers to users of prompts, constructors of 
knowledge to consumers. As Holstein and Aleven argue, the successful implementation 
of AI in learning should not replace human cognition; rather, it should enhance 
cognition—helping students do more, but not doing all the work for them. [5] If the AI 
completes the entire problem-solving process for learners, then learners will not have to 
experience the cognitive struggle, which is necessary for building mental models. 

To start facing this reality, we're going to have to shift our perspective on sorting. 
The new focus is less on writing algorithms from scratch, or themselves and more on 
critically thinking about the structure and strategy behind sorting algorithms. We should 
be getting students to ask things like: Why does Merge Sort have O(n) space? Why is 
Quick Sort unstable? How can Quick Sort be stable? How does Radix Sort work on strings 
or negative numbers? How do we weigh clarity, maintainability, and performance of AI-
written code? 

If we create classroom activities that recapture this complexity of analysis, we're 
keeping the richness of teaching sorting. Rather than disrupting a pedagogical conception 
where generative AI could produce simplified outputs, we're producing hybrid, tool-
savvy learners who can reason through code even when it isn't co-created. 

Table 3. Comparison of Sorting Algorithms in Tool-Aided Learning Context 

Traditional Pedagogy AI-Augmented Pedagogy Future-Oriented Practices 
Tracing swaps and 

comparisons Direct code from AI tools Debugging and analyzing 
tool outputs 

Manual step-by-step 
execution Output-first thinking Encouraging critical failure 

testing 
Learning via iterative 

refinement Copy-editing generated code Exploring design variations 
(e.g., pivot, gap sizes) 

Comparing multiple 
algorithms Choosing one “best” from AI Analyzing trade-offs across 

datasets 
Debugging errors to learn 

logic No bugs in AI outputs 
Reverse engineering and 

intentional editing 
 
Sample activities to incorporate meaningful struggle: 

1. Comparing and Analyzing: Show two AI-generated versions of Bubble Sort. Students 
identify conditional differences or control flow differences and rate them as correct 
or efficient. 

2. Context-Based Selection: Show students an almost sorted dataset. Ask them to select 
Insertion Sort or Quick Sort and write a short justification based on input 
characteristics. 

3. Heap Sort Adaptation: A standard min-heap implementation of Heap Sort is 
provided. Challenge students to modify it so it sorts in descending order, and explain 
the effect on the heap structure. 

4. Radix Sort Discussion: Give an AI tool a generic Radix Sort implementation. Students 
analyze its handling of non-integer data types and suggest improvements for broader 
data compatibility. 
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Figure 2. Transition in Student Engagement: From Manual Implementation to Tool-Aware Critique. 

Table 4. Comparison of Sorting Algorithms in Tool-Aided Learning Contexts 

 
As sorting algorithms become more accessible through AI, they must also become 

more analytical in their teaching. The role of educators is no longer to guide students 
through implementation alone but to help them develop insight into structure, 
performance, and adaptability. By encouraging critique, exploration, and variation, 
sorting algorithms can continue to serve as a rich learning ground — even in an age where 
code is just one prompt away. 

3.3. Beyond Big-O: Reconstructing Complexity Awareness in Tool-Embedded Learning 
When we consider the concept of time complexity not merely as a technical artifact 

but also a mathematical and conceptual filter, we can see how we have delegated to tools 
so much that used to require direct mental agitation. In a generation where Copilot auto-
completes sorting algorithms, ChatGPT explains Big-O in a paragraph in a way that lacks 
analytical rigour or details that might be needed for deep understanding, and where the 
internet runs on algorithm-based neural net models, the problem has become bigger than 
just misinformation. It is gradually creating a space between us and our analytical skills. 
The process of performance struggle, the space, and the execution time in question are 
fading away before us, while we are busy getting our tasks completed, we are losing our 
abilities. In this paper we can, we will review how the academic basis of computational 
complexity is being undermined in tool-augmented learning environments, and how we 
can reboot these tools in a way that preserves the space for developing analytical 
awareness of complexity, not by withdrawing the tools, but by reimagining how they are 
used.  
3.3.1. The Erosion of Complexity Intuition 

Traditionally, mastering the algorithmic complexity was an initiation rite. It made a 
difference between functional programmers and computational thinkers. Nested loops, 
recursion trees, and asymptotic notation were not learned by students simply to take 

Algorithm Stable? Average 
Time Worst Time Space Tool Output 

Accuracy 
Bubble Sort Yes O(n²) O(n²) O(1) High 

Insertion Sort Yes O(n) O(n²) O(1) High 
Merge Sort Yes O(nlog) O(nlog) O(n) Medium 

Heap Sort No O(nlog) O(nlog) O(1) Medium 

Quick Sort No O(nlog) O(n²) O(nlog) High 
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exams but to develop an intuitive feel of how we analyze performance. However, as AI-
based assistants are on the upswing, the performance factor dwells beyond the realms of 
concern. As [6] remarks, it has now become common to find students who complete tasks 
without engaging in the process of reflection on how a task was completed in terms of 
algorithm complexity [8]. Also, clarify that these tools allow achieving a successful code 
generation, yet lower the capacity of students to assess trade-offs in performance. 

We can visualize this shift in the following table: 

Table 5. Human-Coded vs AI-Generated Tasks 
 

Task Type  Human-Coded (Traditional)  AI-Generated (Tool-
Aided) 

Sorting Algorithm Selects algorithms (e.g., Merge 
Sort) based on data size and 

complexity. 

Uses default ‘.sort()’ with 
unknown mechanism. 

Graph Traversal Chooses BFS/DFS based on use-
case and complexity analysis. 

Outputs traversal 
without explaining 

performance trade-offs. 

Recursive 
Optimization 

Evaluates time-space tradeoffs, 
chooses recursion or DP 

appropriately. 

Often selects recursion 
without commenting on 

complexity. 
 

This is not to argue that tools are inherently educationally harmful. On the contrary, 
[18] shows that students often feel empowered by AI-generated solutions — but the 
empowerment is syntactic, not semantic. The tool helps them write, but not necessarily 
think. As a result, students may arrive at a solution without forming an internal compass 
of complexity. Not just this many times, the answers generated by AI may seem real or 
correct, but rather, they are not correct, often called hallucinations. That means tools like 
ChatGPT and Copilot make up stuff to cover many gaps which are not real. This can create 
misinformation and confusion among students who use ChatGPT as a primary source of 
information.  
3.3.2. Why Complexity Still Matters 

There could be an argument that one side would say: A tool that works, why not 
keep it simple? The solution is magnitude and durability. In a meta-analysis of 35 
empirical studies conducted by [9], tool-assisted learning was shown to increase speed 
and produce results of higher correctness, but it shows no correlation with conceptual 
understanding in cases related to complexity. This implies that whoever walks out of an 
algorithms course will be able to write code, but not have the wherewithal to reason about 
algorithm choice when faced by a programming task with memory limits, distributed 
systems, or real-time constraints. 

More recent studies provide even more in-depth information on this. A meta-analysis 
of 51 articles [10] exhibited a substantial effect size of AI tools on basic learning 
performance (g = 0.867), a moderate effect on higher-order thinking (g = 0.457), and a 
critical reflection (g = 0.456). In another research, GenAI users performed 6.7 points less 
than non-users in regular exams. Most importantly, cognitive offloading is strongly and 
negatively related to critical thinking (r = -0.68), whereas the EEG study at MIT Media Lab 
finds much weaker engagement of the brain when solving problems with the help of AI. 

Complexity awareness is also tied to a student's capacity for innovation. Without 
understanding why, a brute-force approach fails at scale, students are unlikely to arrive 
at optimized solutions or to think critically about algorithmic ethics, energy consumption, 
or performance under constrained hardware. 

Table 6. Empirical Gaps in Tool-Aided Complexity Learning 
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To underscore this point, consider the following conceptual figure: 
 

 
Figure 3. 

The cognitive terrain has shifted: students now climb less but arrive faster — though 
they may not know what mountain they were on. 

3.3.3. Reconstructing Pedagogical Approaches 
Then how does one reassemble the knowledge of complexity without tool bans? The 

solution consists of a pedagogical design that uses tools not as shortcuts but as co-
instructors. Think of AI coding tools that render the Big-O complexity of the code they 
write. Or evaluation systems that encourage students to criticize the effectiveness of an AI 
solution. We do not plan to get rid of AI assistance, but represent metacognitive prompts 
and performance dashboards with the purpose of training students to challenge the 
output. [7] propose a framework for scaffolding AI-assisted learning, where tools are 
paired with reflection checkpoints. Extending this, we propose a three-layer complexity-
awareness design: 

Table 7. Pedagogical Layers for Rebuilding Complexity Awareness in AI-Rich Environments 
 

Layer Strategy Example Feature 

Immediate Feedback Real-time complexity estimates 
during code generation 

Tooltip: “Estimated 
Time: O(n log n)” 

Reflective Prompting Ask students to evaluate AI’s 
algorithmic choice 

Quiz: “Is this the best 
approach for n > 10^5?” 

Comparative 
Analysis 

Present two solutions with trade-
offs 

Heatmap: Time vs 
Space vs Readability 

 
We aren’t trying to reverse time or de-AI the classroom. We’re asking: What kind of 

learner emerges when convenience is no longer a cognitive crutch but a springboard for 
inquiry? 

Measure AI Tool User Non-Users 
(Baseline) Source 

Learning 
Performance (g) 

+0.867 Baseline Meta-Analysis by Wang 
& Fan (2025) over 51 

studies 
Higher-order 
Thinking (g) 

+0.457 
 

Baseline 
 

Meta-Analysis by Wang 
& Fan (2025) over 51 

studies 
Critical Thinking (r) –0.68 Baseline MDPI Cognitive 

Offloading Study (2024) 
Neural Engagement 

(EEG) 
Lowest Highest MIT Media Lab EEG 

Study (2023) 
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Questioning computational performance calls upon the educator to develop, not to 
jettison, asymptotic thinking. When learning is surrounded by an atomic generation of 
answers given by tools, it is vital to keep performance analysis at the center of the course. 
Complexity awareness Redesigning education would help solve the problem of 
complexity awareness without any hint at a backward journey to the past. 

3.4. Repositioning Space Complexity as Concept: Not Computation 
3.4.1. Repositioning Space Complexity as a Concept: Not Computation 

Space complexity is given secondary consideration in algorithm teaching--as a topic 
taught after time complexity and as a parameter to be optimized. What pupils are taught 
is to compute stack frames or memory usage, but hardly why there is structure-bound 
space consumption. The importance of working in space as a design problem has 
dwindled even further in the age of AI-assistive technologies, where solutions are 
available in real-time with the help of such tools as GitHub Copilot and ChatGPT.   

To do so, relying on criticisms presented by [13], [11], [12], this area suggests that the 
notion of space complexity might as well be shifted towards being conceptually 
restrictive, a way of thinking and abstraction applicable to the design of algorithms, rather 
than being a measure of effectiveness. 
3.4.2. The Metric-First Framing Problem 

The space complexity is usually seen as abstruse or irrelevant by students, not 
because they are incapable of understanding it, but because these concepts are presented 
without any context that relates them to structure. According to [13], it is mostly 
simplified to formulaic analyses such as O(n), and it is not associated with design logic. 
The CS Socially-Just Worlds critique continues by stating that the excessive focus on 
optimization impairs reflection and access. 

The authors in [11] introduce the notion of conditional teaching size, that is, concepts 
can be comprehended more readily when the internal structures of these concepts are laid 
out. The complexity of teaching space should thus be more conceptually profound and 
design-conscious than memory calculations. 

Table 8. Complexity Transition of Metric to Mental Model of Shifting Space 

 

Element Traditional Framing Conceptual Reframing 

Role in Curriculum Efficiency metric post-solution Design constraint that 
shapes abstraction 

Student Engagement Memorization, surface-level Exploration, structural 
reasoning 

AI Tool Behavior 
 
 

Bypasses or hides space Surfaces and explains 
space-based decisions 

Learning Outcome Faster code Deeper problem 
modeling and trade-off 

analysis 
 

3.4.3. Conceptual AI Tool Design: Examples and Integrations 

1.  Space-Aware Code Suggestions 
Real-time code generation programs (like GitHub Codelike, which finishes 

code according to the circumstances) are getting rampant amongst students. The 
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tools can be augmented so as to provide space-aware tooltips, or overlays, which can 
explain the memory impact of a specific implementation. 

To illustrate a typical example, when a student writes a recursive feature the 
tool would possibly present an elicit such as: 
This is a call which consumes O(n) of the stack. “See Proposed O(1) usage of iterative 
refactoring.” 

This metacognitive micro-intervention transforms the AI into a thinking guide 
that is an auto-completion engine. It helps students develop critical thinking about 
memory trade-offs, and it helps enforce design awareness even in the very process 
of coding. 

2. Visual Stack and Heap Maps 
Learning sites, such as LeetCode and VisuAlgo, may be augmented with live 

visualizations showing the use of memory to execute algorithms. These tools help 
students form a concrete spatial intuition of space complexity by exhibiting space 
growth or heap allocation in real time, as opposed to abstract notation only. 

This graph is a comparison of the memory used in two implementations of 
DFS. Recursive DFS exhibits a linearly growing depth of the traversed stack with 
increased input, whereas iterative DFS has a flat memory profile. The visualization 
also brings the behaviour of space to touch and empowers the structural realization. 

 
Figure 4. Stack Depth between Recursive and Iterative DFS 

3. Post-Solution Reflection Prompts 
The reflection prompts which focus on space can be proposed at a platform 

such as Codio and Khan Academy AMP that suggest products in a step-by-step 
method of coding that is followed once the solution is provided. Such hints stimulate 
the learners to be critical to their memory usages and seek alternatives. 

The questions may be related to the following example: Are you able to make 
space usage O(n) instead of O(n²)? What data structure is taking the largest 
contribution to the memory increase in your solution? Such prompts reinforce 
conceptual metacognition and align with the idea of implicit scaffolding [12] , where 
learners are guided toward insight without direct instruction, keeping the learning 
flow intact while deepening understanding. 

4. Future Vision: Constraint-Oriented Learning Tools 
We propose a future tool that lets students set a space budget at the start (e.g., 

O(log n)) and builds awareness around constraints like a canvas size in design. 
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Table 9. Proposed vs Existing Tool Behavior 

Tool Current Behaviour Proposed Conceptual 
Behavior 

GitHub Copilot Completes code Adds memory usage 
annotations with reasoning 

ChatGPT Explains time/space only if asked Proactively surfaces spatial 
trade-offs 

LeetCode 
 
 

Reports time/space post-
submission 

 

Visualizes growth 
dynamically during 

solution 
Khan Academy AMP Validates correctness Adds space-focused 

prompts post-submission 

Table 10. Metric-Based vs Constraint-Based Thinking 

Design Mode Example Cognitive Impact 

Metric-Based O(n²) calculated after code Post hoc evaluation, low 
reflection 

Constraint-Based 
 
 

O(log n) budget set before design 
 

Real-time trade-off 
awareness, structural play 

Visual Tracker Heatmap or stack graph Builds spatial intuition and 
abstraction skill 

 

5. Theoretical Framework: Why These Tools Work 
These innovations are deeply rooted in learning theory: 
Vygotsky’s Zone of Proximal Development (ZPD): Students learn best when 
supported just beyond their current level; AI prompts act as real-time scaffolds. 
Bruner’s Scaffolding: Visual guides and prompts serve as temporary support 
structures that gradually fade as students internalize conceptual knowledge. 
Constructivist Learning: Students develop understanding by actively engaging with 
abstract principles. Conceptual space tools make these abstractions tangible and 
manipulable. Visual framework showing Vygotsky → Bruner → Constructivism  →  
AI as Bridge to Abstraction 

 
Figure 5. Theoretical Grounding of Conceptual Space Tools 
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3.5. From Memorization to Mechanization: Rethinking Dynamic Programming Strategy 
3.5.1. From Memorization to Mechanization: Rethinking Dynamic Programming 
Strategy 

Traditional approaches to teaching dynamic programming (DP) in computer science 
education often emphasize memorizing canonical problem templates—such as the “0/1 
Knapsack,” “Longest Common Subsequence,” or “Fibonacci with memorization.” 
Students are typically exposed to these problems through repetitive textbook exercises 
or online tutorials that emphasize reproducing code structure rather than fostering 
conceptual grasp of the underlying principles. While they may be taught the 
terminology of “optimal substructure” or “overlapping subproblems,” they rarely 
develop the capacity to independently identify or derive these properties. Consequently, 
many students learn to match problems to pre-solved examples, leading to a surface-
level understanding of algorithmic thinking [15]. 

Such rote-learning exercises can be adequate in ensuring short-term evaluation but 
cannot develop transferable skills of problem-solving. Luckily, a new chance to shape 
the approach to DP is presented by the introduction of AI-enhanced learning conditions. 
Intelligent tools accelerate the learning process through intuitive feedback mechanisms 
and visualization opportunities, saving time and increasing the conceptual instinct of 
any learner. 

Dynamic programming is vertically opaque, but AI-enabled systems allow the latter 
to be drawn like recursion trees, memorization patterns, and the workflow in solving 
subproblems. The tools can be used not only to ensure that they are correct, but also to 
assist students in constructing solutions that they might find hard to understand at first. 

For instance, Table below, emerging tools offer diverse ways to scaffold student 
learning: 

Table 11. AI Tools Supporting Conceptual Learning in Dynamic Programming 

Tool Name Functionality How It Changes Learning 
Practice 

DPVis Visualizes recursion depth, 
memorization hit/miss patterns, 

and call graphs 

Makes abstract recursion 
concrete; students visually 

track how subproblems 
overlap 

SAKSHM-AI Uses code parsing and real-time 
feedback to provide step-by-step 

explanation 

Provides AI-guided 
debugging and complexity 
insights as students write 

or fix solutions 
 

These tools reshape DP learning in three fundamental ways: 
From copying to constructing logic: Instead of reusing known code, students are 

guided to build logical structures independently. From guessing to visualizing 
recursion: They can observe how recursion unfolds and how memorization optimizes 
performance. From confusion to feedback: When errors occur, tools explain why—
turning mistakes into reflective learning opportunities. 

This move can be accommodated in the contemporary approaches to education, 
which values thinking long-term and metacognition rather than just getting the 
problems solved. Research indicates that AI-directed teaching can also cause greater 
reflection of students and the capacity to work out their own explanations [16]. 

However, there must be a balance between the AI assistance and the possibility of 
thinking on their own. Although learning may be scaffolded by these tools, they are not 
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to be used instead of the critical thinking skills needed in dealing with problems that 
have not been encountered before. Students nevertheless have to be taught to apply DP 
skills by being able to reason on the basis of challenges without basing everything on 
automation [16]. 

3.6. Prompting for Optimality: Greedy Algorithms in the Age of Generative AI 
3.6.1. Prompting for Optimality: Greedy Algorithms in the Age of Generative AI 

In traditional algorithm classrooms, greedy strategies were a test of disciplined logic: 
make a locally optimal choice and prove it leads to a global optimum. Students were 
trained to weigh trade-offs, build counterexamples, and justify correctness. Problems 
like Activity Selection or Huffman Coding demanded structured reasoning—not just 
working code. 

AI tools like ChatGPT and GitHub Copilot can now generate complete greedy 
solutions from a single prompt. While this boosts accessibility, it risks collapsing 
learning into mimicry. [18] found that students often bypass deeper reasoning, treating 
outputs as templates rather than hypotheses to explore [18].  

As an answer, programs such as AI-Lab [19] command students not only to request 
responses, but also to defend greedy actions, contrast methods, and criticize solutions. In 
particular, they ought to pose such questions like what is the reason Huffman Encoding 
mixes the minimal frequencies, or make the AI systems crash on counterexamples. 
Optimality in this case implies more than being correct in output, but also in insight into 
when and why the strategy is successful. 

Prompting becomes a scaffolded inquiry. The table below (adapted from [21]) shows 
how prompt type influences cognitive depth: 

Table 12. Prompt Types and Cognitive Impact in Greedy Algorithms 

Prompt Type Example Cognitive Impact 

Template “Give me code for Fractional 
Knapsack” 

Low 

Exploratory “Why does greedy work for 
Fractional but not 0/1 Knapsack?” 

Medium 

Diagnostic “Show when greedy coin change 
fails” 

High 

Comparative “Compare greedy with dynamic 
programming” 

 

High 
 

This is the core of prompt engineering: crafting queries that evoke reasoning, not just 
responses [21]. One risk is mistaking correctness for understanding. A greedy solution to 
Coin Change may work on U.S. coins but fail on (1, 3, 4)—unless prompted to test 
counterexamples, the flaw is hidden. It describes this learning space as a “Socratic 
playground,” where students challenge, revise, and probe AI answers. 

Students using AI tools performed consistently better [22], with tighter score 
distributions. While not algorithm-specific, this trend signals how AI, when scaffolded 
properly, can boost outcomes. This raises key questions: Can AI learn greedy strategies 
from prompts, or does it default to known patterns? Can prompting help AI reject greedy 
logic where it fails (e.g., Coin Change)? Can we teach AI to justify or critique its own 
strategy choices [20]? The goal is not to eliminate AI, but to use it as a cognitive partner. 
Prompting, done right, becomes a form of proof-building—less about syntax, more about 
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structure. Greedy algorithms, once a test of logic, now ask a different question: Can 
students still reason when the answer is instantly available? 

 

Figure 6. Prompting Loop for Greedy Algorithm Comprehension 

4. Assessment And Valuation 

Conventional computer science education has not historically placed much value on 
assessment processes. Before the advent of AI, assessment was typically based on the 
correctness of the code: does the code run, and does it produce the expected output? Now 
that students can generate complete, bug-free code using programs like ChatGPT or 
GitHub Copilot, these surface-level criteria are no longer sufficient. A student may turn 
in a fully functional recursive sorting method without writing or even understanding any 
of the code. This calls for a shift in how we assess: rather than focusing on what students 
produce, we need to pay closer attention to how they got there. Did they edit the AI-
generated output? Did they explain the code? Did they use the AI-generated output as a 
base to debug and improve on? Did they provide a critique of the AI-generated output? 
Two students may submit the same result, but one student may have a greater depth of 
engagement with the code than the other student. If we adopt substantial reflection 
methods designed for students--via inline comments interpreting the logic in their code, 
verbal walkthroughs of their code, or even designing a set of learning activities prompting 
students to keep AI-generated code version one in a draft state for debugging purposes--
then assessment and learning can combine to serve both a demonstration of 
understanding and the metacognitive attributes of curiosity, iteration, and awareness of 
tool use. In an assessment approach like this, the goal shifts toward evaluating growth 
over perfection—focusing on learning, not just the final product. 

5. Conclusion And Future Work 

As AI tools become more ubiquitous in the information workspace of a computer 
science student, educators are presented with the challenges of retaining the cognitive 
burdens that algorithmic problem-solving used to demand. This paper has highlighted 
that concepts such as divide and conquer, sorting, and algorithmic complexity need to be 
re-conceptualized—not abandoned—to be meaningfully educationally situated in tool-
augmented contexts. We have suggested that instead of fighting AI, we should design 
learning experiences that promote student questioning, critiquing, and building on what 
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these tools create. We have suggested that future work look for structured classroom 
interventions that use AI as more than a means to a quick answer, and utilize it as a co-
reasoning partner. How can AI tools support rather than replace thinking? What new 
forms of assessment or engagement become possible when students are taught to work 
with intelligent systems in a critical way? These questions will require us to apply 
pedagogical imagination and technical insight. Moving forward, as our work 
environments change, so too must we change how we teach and how we think about 
teaching algorithmic understanding. 
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