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Abstract

The problem of the boundary in algorithmic learning that has preoccupied scholarly and
practical discussion since the inception of generative Al platforms such as ChatGPT and
GitHub Copilot seems to be drifting into the past. In this paper, the study conceptually
examines the issue of tool-augmented environments by addressing the choice and degree
to which students can bypass the kind of cognitive challenge that in the past was required
to achieve the sophistication in recursive logic, complexity analysis or optimization
strategies. The introduction to the paper shifts the narrative of Al negatively by
conceptualizing a pedagogical re-imagination where Al would not be positioned as an
existential threat, but as a co-reasoning partner instead. Divide and Conquer, Sorting,
Space and Time Complexity, Dynamic Programming, and Greedy Algorithms case
studies are provided, as well as a set of supporting educational interventions that will
enable driving critique, reconstruction, and metacognition over time. The notions of
recursion, fault injection, prompt engineering, and constraint-based tool design can be
viewed as an illustrative example of how productive struggle can be maintained in Al-
assisted environments. Focused on such integration of empirical inquisition, the theory of
learning, and design-based thinking, the paper proposes a new vision: a vision where
automation supplements rather than replaces conceptual mastery, where algorithmic
thinking is deeply human, critical, and creative.

Keywords: Al-assisted learning; Algorithms pedagogy; Problem solving; Tool
Augmented Learning; Computational thinking; Complexity analysis; Recursive
algorithms; Dynamic programming.

1. Introduction

We're in a moment where writing code —or even understanding how it works—is no
longer a prerequisite for getting correct results. With tools like ChatGPT, Copilot, and
algorithm visualizers becoming standard in students” workflows, many can bypass the
slow, frustrating steps of learning to design or debug algorithms altogether. That might
sound like a win. But it raises a serious question: what happens when students stop
struggling with the material? In the past, the effort to understand
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recursive calls, optimizing for time, or structure divide-and-conquer strategies
wasn’t just about getting the right answer; it was where real learning actually happened.
Algorithmic thinking was built through discomfort and struggle. And when Al fills in the
gaps too early, that experience of grappling with the problem is what quietly disappears.

This paper argues that we don’t need to abandon Al tools—but we do need to rethink
how they’re used in algorithm education. We focus on six key areas—Divide and
Conquer, Sorting, Time Complexity, Space Complexity, Dynamic Programming, and
Greedy Algorithms—to explore how Al affects both what students learn and how they
learn it. Our goal is to move beyond binary thinking —that is, whether Al is good or bad —
and instead offer concrete models that bring back productive struggle in meaningful
ways. These include letting students critique Al-generated solutions, reconstruct broken
logic, or compare different recursive strategies. If done well, tool-assisted learning can
push students toward deeper understanding —not shortcut it.

2. Literature Review

To have an idea of the changing role of artificial intelligence in computer education,
itis necessary to understand more than simply having a theoretical knowledge of artificial
intelligence mathematics- one must also understand and then examine patterns, research
methodologies and debates in computer-assisted learning. As demonstrated in the early
[16] and today (via interactive visualizations and prompts designed by Al, the paper
comments on both substantial progress and persistent challenges en route to aligning the
Al technologies with meaningful outcomes.

The foundations of computer-based problem-solving have in the past been
underpinned by hardwired mathematical rules. [16] It is considered one of the
cornerstones works that focus on logical methodologies suitable to solve problems called
proper reasoning, which is a study that has advancements as a paradigm of computational
thinking. [13] has articulated similar sentiments where they argue in favour of the
perspective of space complexity, where there would be an academic balance between the
limits of memory and time efficiency of our algorithms, all else being equal, which is of
particular interest when teaching dynamic programming and recursion in depth.
Furthermore, we have also acquired the idea of conditional teaching size because it
informs us of the minimum of interaction needed to generalize situation-sets in the
learning of students [11]. Although these theoretical developments can give good
guidance on how Al-driven instruction can be beneficial, we are still struggling to
understand how the learners actually view and understand it internally, since everyone
learns in unique ways.

The paper [18] pointed out that the direct answers and perfect code samples have
deteriorated the analysis and ability of the learners to comprehend the code logic. As [14],
[15] has identified that dpvis, a visual dynamic programming tool, only productive gains
occurred when there was some form of visual aids incorporated alongside well-organized
prompts. All these findings have demonstrated similar findings, by presenting that Al
tools could provide immediate, correct responses, but not be able to do something such
as improve a critical aspect of a learner’s ability.

Recent research in education and AI has suggested that applying mixed
methodology might be a good solution, integrating interactive and performance data. We
know that [12] Provided quiet help to users through learning games or simulations, then
analyzing the log data and conducting interviews to track their conceptual navigation.
While these practices provide us with valuable insights, there is still a major gap in
analyzing whether they lead to conceptual mastery and to be able to apply knowledge in
new contexts.

Studies have shown better results without considering the actual factor of whether
students have actually built the ability to reason, or are they just following patterns. [20]
mention that learners barely take on the underlying logic that Al uses to develop correct
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and sound answers. [22] has also pointed out the lack of extensive data or primary
research conducted on students to see how responsible they are to learn independently.
Fixed images and questions can make students just copy instead of thinking. As [17]
highlights, true engagement requires interaction.

Al is redesigning the learning environments for code development, moving from
inflexible to adaptive, tool-assisted learning. While theory and short-term studies
encourage its use, long-term effects on cognitive reasoning are still unclear. For students
to actually benefit from these Al tools, we need to pair them with strategies that not only
build but also enhance critical thinking abilities.

3. Basic Sequence for algorithms and problem-solving Curriculum in tool-augmented
spaces

For the teaching of algorithms in an Al-assisted environment, a reframed curricular
arc now emphasizes conceptual labour while acknowledging the realities of tool reliance.
This section outlines a restructured sequence for algorithm instruction, grounded in six
interdependent areas: Divide and Conquer, Sorting, Complexity (Time and Space),
Dynamic Programming, and Greedy Algorithms. Each of these areas is approached not
simply as a computational method, but as a pedagogical space where automation can
either dilute or deepen student understanding. We want to be clear: our goal is not to
introduce abstract content in isolation, but to create opportunities for students to critically
engage with intelligent tools instead of memorizing or passively consuming outputs. In
the following sections, we reflect on the disappearing struggles traditionally tied to
learning through design, and offer practical interventions—such as prompt engineering,
fault injection, visualization, and peer-based reconstruction —to help reposition reasoning
at the center of algorithmic learning. Together, these sections point toward an
instructional model where conceptual understanding and intelligent tooling are not at
odds, but co-designed to produce richer learning experiences.

3.1. Recontextualizing Divide and Conquer in Tool-Aided Problem Solving

Divide and Conquer (D&C) is a classic algorithmic paradigm that invites learners to
break down a problem into smaller subproblems, solve each recursively, and then merge
the solutions—think Merge Sort, Binary Search, or the classic closest-pair problem. When
taught traditionally, students manually construct recursion trees, identify base and merge
cases, and analyze stack growth. Visualization tools, paper drills, and handwritten dry
runs build a robust mental model of recursion’s structure and behaviour.

This can be not only cognitively intense, but also very educational when done
correctly. For example, when students work through Merge Sort, they are not only writing
code, they are also visualizing how the sub-arrays are merged, at what point the stack
depth fluctuates, and where the behaviours of the runtime change. Thinking recursively
in all contexts will foster algorithmic intuition, enabling deeper learning beyond syntax.
This prepares students for less common techniques too, like Karatsuba multiplication or
parallel divide and conquer scheduling [2], both of which deepen recursive reasoning and
enable more efficient algorithmic performance. Critically, divide-and-conquer doesn’t just
structure recursive solutions—it forms the architectural backbone of scalable parallel
algorithms. As Blelloch illustrates in his foundational work on parallel programming,
D&C patterns make it possible to reason about both work and depth in recursive systems,
enabling students to transition from sequential logic to massively parallel thinking [3].

However, visualization alone over time was inadequate when used passively.
Studies like Al-Thobhani et al demonstrated that when students actively created
visualizations for recursive execution, they increased their problem-solving accuracy and
improved their depth of thinking when compared to their peers who only viewed
visualizations [1]. Their work highlights the pedagogical importance of constructive
learning over passive observation.
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Students in today's classrooms typically bypass the experience of reconstructing
recursion. As Al tools such as ChatGPT or coded assistants create complete D&C
implementations instantaneously, students get correct code but often without
understanding the interaction between recursion, base cases, and merge logic. Essentially,
the learner's role has evolved from being an architect to that of a cross between a user and
spectator.

To counter this and reframe D&C pedagogy, instructors must reacquire the mantle
of critical thinking over code generation. Students could be challenged by asking
questions like:

1. What does the recursion tree tell us about the stack depth and spatial overhead?

2. How would the pivot or division strategies differ in edge situations?

3. If the merging phase fails on duplicates or skewed input, where exactly and why
does it fail?

Asking such questions restores cognitive tension to the task and stops blind faith in
Al-scripted code. To illustrate this in action, below are examples of learning activities:
1. Recursion Fault Injection: Provide an Al-generated version of Merge Sort that
improperly handles duplicate elements (or any non-integer inputs). Students find the
bug and correct the merging logic or base-case condition.

2. Variations on the Divide Strategy: Give students a template D&C algorithm, and have

them play with different divide sizes, such as using 3-way partitioning instead of
dividing in halves, etc., and reflect on how the complexity and memory behaviour
change.

3. Recursion Tree Investigation: Provide an Al-generated D&C implementation of Binary

Search or FFT. Have the students illustrate the recursion tree and annotate the usage
of the stack in relation to the tree, and then compare it to the actual runtime output for
N-element inputs.

4. Collaborative Small-Group Reconstruction: Use the “Divide & Conquer” peer-teaching

method developed by Samsa and Goller [3]. Place the students in small groups, have
each student reconstruct a section of the recursive algorithm (divide logic, base-case,
combine step, etc.) and then explicate it to colleagues using collaborative slides or other
visual aids.

Table 1. Pedagogical Shift in Divide & Conquer Strategy

Traditional Pedagogy Al-Augmented Pedagogy  Future-Oriented Practices

Draw recursion tree Al generates recursive Critique recursion structure
manually implementation and divide-merge logic

Copy Al-generated Merge Predict failure cases; reverse-

Hand-coded Merge Sort Py A48 8 . .
Sort engineer logic
Label base-case correctness Accept Al's default base-case ~ Test custom base-case
by choice variations
. Intentionally leave holes for
Write code from scratch Rely on templates y .

student reconstruction

. . Compare recursive runtime

Simulate recursion mentally Trust output

behavior with reality

Table 2. Common Al-Generated Divide & Conquer Mistakes and Fixes

Error Type Al-Augmented Pedagogy  Future-Oriented Practices

. .. . Manually add base case +
Missing base case Infinite recursion .

test inputs
Copy Al-generated Merge

Incorrect merge logic
8¢ 108 Sort

Dry-run with sample arrays
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Manual(from-scratch)

. Overwrites elements or fails Test custom base-case
Stack overflow with large N

on duplicates variations
. . Switch to tail recursion or
Write code from scratch Recursive depth too deep . .
iterative
. L Replace constants with
Hardcoded array sizes Poor generalization P ,
dynamic lengths
@ CognitiveLoad @ Learning Outcome
Recieve Al- c 4
G te Cod xecute an
enerate Lode — \ Observe
Behavior

Modify or )

Stress Test the 1 Anal .
Algorithm <— [.9 Analyze Recursive
Logic

Reflect ‘and

Explain

Al-Only (Copy & Paste) Constructive Code Review

(a) (b)

Figure 1. (a) Comparing Cognitive Load and Learning Outcomes in Manual, Al-Assisted, and
Critique-Based Divide & Conquer Learning. (b) From Copying to Understanding: A Smarter Way
to Learn Divide & Conquer with AI Codes.

3.2. Reframing Sorting Algorithms for Tool-Aware Learners

Sorting algorithms have been more than just code for execution; they provide
learners a pathway towards computational thinking. They are designed to build deeper
understanding, such as loops, conditionals, recursions, and memory usage. If we look at
the brute force nature of Bubble Sort or the recursive nature of Merge Sort, we see that
these algorithms help learners grasp time complexity, memory use as well as algorithmic
design.

What makes sorting such a powerful teaching tool is the way it allows learners to
mentally simulate what code is doing, step-by-step. For example, by tracing the nested
iterations in Selection Sort, students begin to internalize what O(n?) behaviour looks like
in practice. With Merge Sort, they begin to see how recursive function calls translate into
stack frames, and how local solutions are stitched into global ones. This type of internal
modelling —where students don't just run a program but visualize and reason through its
structure—is a crucial part of learning to think like a computer scientist.

Research has shown that this modelling becomes more effective when learners make
their own representations of algorithms, like making their own visualizations instead of
watching other animations. In a Cetin and Andrews-Larson study, students who built
their own representations of sorts of algorithms had better conceptual understanding than
students who viewed pre-built ones. [4] This is fundamental for understanding how
sorting pedagogy is changing in the Al era.

In today's world, that traditional struggle to "figure out" how sorting actually works
can almost be avoided entirely. With the emergence of Al tools like ChatGPT, GitHub
Copilot, and LeetCode's smart code explainers, students can now generate working
versions of Insertion Sort, Quick Sort, or even Radix Sort, with a single prompt. The output
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is often not only syntactically correct, but also neat, optimized and described. What would
take students hours of consideration and debugging can now be served up in seconds,
and while this productivity gain is certainly helpful, it creates a very different relationship
to the material for that student. Instead of understanding the "why" and "how" behind the
logic, students risk understanding only the "what."

This shift turns students from problem solvers to users of prompts, constructors of
knowledge to consumers. As Holstein and Aleven argue, the successful implementation
of Al in learning should not replace human cognition; rather, it should enhance
cognition—helping students do more, but not doing all the work for them. [5] If the Al
completes the entire problem-solving process for learners, then learners will not have to
experience the cognitive struggle, which is necessary for building mental models.

To start facing this reality, we're going to have to shift our perspective on sorting.
The new focus is less on writing algorithms from scratch, or themselves and more on
critically thinking about the structure and strategy behind sorting algorithms. We should
be getting students to ask things like: Why does Merge Sort have O(n) space? Why is
Quick Sort unstable? How can Quick Sort be stable? How does Radix Sort work on strings
or negative numbers? How do we weigh clarity, maintainability, and performance of Al-
written code?

If we create classroom activities that recapture this complexity of analysis, we're
keeping the richness of teaching sorting. Rather than disrupting a pedagogical conception
where generative Al could produce simplified outputs, we're producing hybrid, tool-
savvy learners who can reason through code even when it isn't co-created.

Table 3. Comparison of Sorting Algorithms in Tool-Aided Learning Context

Traditional Pedagogy Al-Augmented Pedagogy  Future-Oriented Practices
; D ; vzi
Tracing swaps and Direct code from Al tools ebugging and analyzing
comparisons tool outputs
Manual step-by-step
execution

Encouraging critical failure

Output-first thinking testing

Learning via iterative Exploring design variations

Copy-editing generated code

refinement (e.g., pivot, gap sizes)
i ipl Analyzing trade-off
Comparmg multiple Choosing one “best” from AI nalyzing trade-offs across
algorithms datasets
Debugging er?ors to learn No bugs in Al outputs Re\./erse e.ngineer.ir?g and
logic intentional editing

Sample activities to incorporate meaningful struggle:

1. Comparing and Analyzing: Show two Al-generated versions of Bubble Sort. Students
identify conditional differences or control flow differences and rate them as correct
or efficient.

2. Context-Based Selection: Show students an almost sorted dataset. Ask them to select
Insertion Sort or Quick Sort and write a short justification based on input
characteristics.

3. Heap Sort Adaptation: A standard min-heap implementation of Heap Sort is
provided. Challenge students to modify it so it sorts in descending order, and explain
the effect on the heap structure.

4.  Radix Sort Discussion: Give an Al tool a generic Radix Sort implementation. Students
analyze its handling of non-integer data types and suggest improvements for broader
data compatibility.
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) v L Traci
Manual Learnmg/ ;:i‘t‘;g::a::;g’

Instant Code via
Tools (ChatGPT,
Copilot)

Al-Assisted Learning

Tool-Aware Critique

Figure 2. Transition in Student Engagement: From Manual Implementation to Tool-Aware Critique.

Algorithm Stable? Av?rage Worst Time Space Tool Output
Time Accuracy
Bubble Sort Yes Omn?) Omn?) o) High
Insertion Sort Yes O(n) Omn?) o) High
Merge Sort Yes O(nlog) O(nlog) Om) Medium
Heap Sort No O(nlog) O(nlog) o) Medium
Quick Sort No O(nlog) Omn?) O(nlog) High

Table 4. Comparison of Sorting Algorithms in Tool-Aided Learning Contexts

As sorting algorithms become more accessible through Al they must also become
more analytical in their teaching. The role of educators is no longer to guide students
through implementation alone but to help them develop insight into structure,
performance, and adaptability. By encouraging critique, exploration, and variation,
sorting algorithms can continue to serve as a rich learning ground — even in an age where
code is just one prompt away.

3.3. Beyond Big-O: Reconstructing Complexity Awareness in Tool-Embedded Learning

When we consider the concept of time complexity not merely as a technical artifact
but also a mathematical and conceptual filter, we can see how we have delegated to tools
so much that used to require direct mental agitation. In a generation where Copilot auto-
completes sorting algorithms, ChatGPT explains Big-O in a paragraph in a way that lacks
analytical rigour or details that might be needed for deep understanding, and where the
internet runs on algorithm-based neural net models, the problem has become bigger than
just misinformation. It is gradually creating a space between us and our analytical skills.
The process of performance struggle, the space, and the execution time in question are
fading away before us, while we are busy getting our tasks completed, we are losing our
abilities. In this paper we can, we will review how the academic basis of computational
complexity is being undermined in tool-augmented learning environments, and how we
can reboot these tools in a way that preserves the space for developing analytical
awareness of complexity, not by withdrawing the tools, but by reimagining how they are
used.

3.3.1. The Erosion of Complexity Intuition

Traditionally, mastering the algorithmic complexity was an initiation rite. It made a
difference between functional programmers and computational thinkers. Nested loops,
recursion trees, and asymptotic notation were not learned by students simply to take
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exams but to develop an intuitive feel of how we analyze performance. However, as Al-
based assistants are on the upswing, the performance factor dwells beyond the realms of
concern. As [6] remarks, it has now become common to find students who complete tasks
without engaging in the process of reflection on how a task was completed in terms of
algorithm complexity [8]. Also, clarify that these tools allow achieving a successful code
generation, yet lower the capacity of students to assess trade-offs in performance.

We can visualize this shift in the following table:

Table 5. Human-Coded vs AI-Generated Tasks

AI-Generated (Tool-

Task Type Human-Coded (Traditional) Aided)
Sorting Algorithm Selects algorithms (e.g., Merge  Uses default “.sort()” with
Sort) based on data size and unknown mechanism.
complexity.
Graph Traversal Chooses BFS/DFS based on use- Outputs traversal
case and complexity analysis. without explaining
performance trade-offs.
Recursive Evaluates time-space tradeoffs, Often selects recursion
Optimization chooses recursion or DP without commenting on
appropriately. complexity.

This is not to argue that tools are inherently educationally harmful. On the contrary,
[18] shows that students often feel empowered by Al-generated solutions — but the
empowerment is syntactic, not semantic. The tool helps them write, but not necessarily
think. As a result, students may arrive at a solution without forming an internal compass
of complexity. Not just this many times, the answers generated by Al may seem real or
correct, but rather, they are not correct, often called hallucinations. That means tools like
ChatGPT and Copilot make up stuff to cover many gaps which are not real. This can create
misinformation and confusion among students who use ChatGPT as a primary source of
information.

3.3.2. Why Complexity Still Matters

There could be an argument that one side would say: A tool that works, why not
keep it simple? The solution is magnitude and durability. In a meta-analysis of 35
empirical studies conducted by [9], tool-assisted learning was shown to increase speed
and produce results of higher correctness, but it shows no correlation with conceptual
understanding in cases related to complexity. This implies that whoever walks out of an
algorithms course will be able to write code, but not have the wherewithal to reason about
algorithm choice when faced by a programming task with memory limits, distributed
systems, or real-time constraints.

More recent studies provide even more in-depth information on this. A meta-analysis
of 51 articles [10] exhibited a substantial effect size of Al tools on basic learning
performance (g = 0.867), a moderate effect on higher-order thinking (g = 0.457), and a
critical reflection (g = 0.456). In another research, GenAl users performed 6.7 points less
than non-users in regular exams. Most importantly, cognitive offloading is strongly and
negatively related to critical thinking (r =-0.68), whereas the EEG study at MIT Media Lab
finds much weaker engagement of the brain when solving problems with the help of AL

Complexity awareness is also tied to a student's capacity for innovation. Without
understanding why, a brute-force approach fails at scale, students are unlikely to arrive
at optimized solutions or to think critically about algorithmic ethics, energy consumption,
or performance under constrained hardware.

Table 6. Empirical Gaps in Tool-Aided Complexity Learning
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Non-Users

Measure Al Tool User . Source
(Baseline)
Learning +0.867 Baseline Meta-Analysis by Wang
Performance (g) & Fan (2025) over 51
studies
Higher-order +0.457 Baseline Meta-Analysis by Wang
Thinking (g) & Fan (2025) over 51
studies
Critical Thinking (r) -0.68 Baseline MDPI Cognitive
Offloading Study (2024)
Neural Engagement Lowest Highest MIT Media Lab EEG
(EEG) Study (2023)

To underscore this point, consider the following conceptual figure:

Traditional Pedagogy Tool-Augmented Pedagogy
+» Manual Design * Tool Suggestions
+ Complexity Trade-offs * Functional Output
* Scaling Awareness * Lack of Runtime Reflection

Figure 3.

The cognitive terrain has shifted: students now climb less but arrive faster — though
they may not know what mountain they were on.

3.3.3. Reconstructing Pedagogical Approaches

Then how does one reassemble the knowledge of complexity without tool bans? The
solution consists of a pedagogical design that uses tools not as shortcuts but as co-
instructors. Think of Al coding tools that render the Big-O complexity of the code they
write. Or evaluation systems that encourage students to criticize the effectiveness of an Al
solution. We do not plan to get rid of Al assistance, but represent metacognitive prompts
and performance dashboards with the purpose of training students to challenge the
output. [7] propose a framework for scaffolding Al-assisted learning, where tools are
paired with reflection checkpoints. Extending this, we propose a three-layer complexity-
awareness design:

Table 7. Pedagogical Layers for Rebuilding Complexity Awareness in AI-Rich Environments

Layer Strategy Example Feature
Immediate Feedback Real-time complexity estimates Tooltip: “Estimated
during code generation Time: O(n log n)”
Reflective Prompting Ask students to evaluate Al's Quiz: “Is this the best
algorithmic choice approach for n > 10"5?”
Comparative Present two solutions with trade- Heatmap: Time vs
Analysis offs Space vs Readability

We aren't trying to reverse time or de-Al the classroom. We're asking: What kind of
learner emerges when convenience is no longer a cognitive crutch but a springboard for
inquiry?
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Questioning computational performance calls upon the educator to develop, not to
jettison, asymptotic thinking. When learning is surrounded by an atomic generation of
answers given by tools, it is vital to keep performance analysis at the center of the course.
Complexity awareness Redesigning education would help solve the problem of
complexity awareness without any hint at a backward journey to the past.

3.4. Repositioning Space Complexity as Concept: Not Computation
3.4.1. Repositioning Space Complexity as a Concept: Not Computation

Space complexity is given secondary consideration in algorithm teaching--as a topic
taught after time complexity and as a parameter to be optimized. What pupils are taught
is to compute stack frames or memory usage, but hardly why there is structure-bound
space consumption. The importance of working in space as a design problem has
dwindled even further in the age of Al-assistive technologies, where solutions are
available in real-time with the help of such tools as GitHub Copilot and ChatGPT.

To do so, relying on criticisms presented by [13], [11], [12], this area suggests that the
notion of space complexity might as well be shifted towards being conceptually
restrictive, a way of thinking and abstraction applicable to the design of algorithms, rather
than being a measure of effectiveness.

3.4.2. The Metric-First Framing Problem

The space complexity is usually seen as abstruse or irrelevant by students, not
because they are incapable of understanding it, but because these concepts are presented
without any context that relates them to structure. According to [13], it is mostly
simplified to formulaic analyses such as O(n), and it is not associated with design logic.
The CS Socially-Just Worlds critique continues by stating that the excessive focus on
optimization impairs reflection and access.

The authors in [11] introduce the notion of conditional teaching size, that is, concepts
can be comprehended more readily when the internal structures of these concepts are laid
out. The complexity of teaching space should thus be more conceptually profound and
design-conscious than memory calculations.

Table 8. Complexity Transition of Metric to Mental Model of Shifting Space

Element Traditional Framing Conceptual Reframing

Role in Curriculum Efficiency metric post-solution Design constraint that
shapes abstraction

Student Engagement Memorization, surface-level Exploration, structural
reasoning
Al Tool Behavior Bypasses or hides space Surfaces and explains

space-based decisions

Learning Outcome Faster code Deeper problem
modeling and trade-off
analysis

3.4.3. Conceptual Al Tool Design: Examples and Integrations

1. Space-Aware Code Suggestions

Real-time code generation programs (like GitHub Codelike, which finishes
code according to the circumstances) are getting rampant amongst students. The
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tools can be augmented so as to provide space-aware tooltips, or overlays, which can
explain the memory impact of a specific implementation.

To illustrate a typical example, when a student writes a recursive feature the
tool would possibly present an elicit such as:

This is a call which consumes O(n) of the stack. “See Proposed O(1) usage of iterative
refactoring.”

This metacognitive micro-intervention transforms the Al into a thinking guide
that is an auto-completion engine. It helps students develop critical thinking about
memory trade-offs, and it helps enforce design awareness even in the very process
of coding.

2. Visual Stack and Heap Maps

Learning sites, such as LeetCode and VisuAlgo, may be augmented with live
visualizations showing the use of memory to execute algorithms. These tools help
students form a concrete spatial intuition of space complexity by exhibiting space
growth or heap allocation in real time, as opposed to abstract notation only.

This graph is a comparison of the memory used in two implementations of
DFS. Recursive DFS exhibits a linearly growing depth of the traversed stack with
increased input, whereas iterative DFS has a flat memory profile. The visualization
also brings the behaviour of space to touch and empowers the structural realization.

10 Recursive DFS
=~ [terative DFS

Stack Frames Used

2 4 6 8 10
Input Size (n)

Figure 4. Stack Depth between Recursive and Iterative DFS

3. Post-Solution Reflection Prompts

The reflection prompts which focus on space can be proposed at a platform
such as Codio and Khan Academy AMP that suggest products in a step-by-step
method of coding that is followed once the solution is provided. Such hints stimulate
the learners to be critical to their memory usages and seek alternatives.

The questions may be related to the following example: Are you able to make
space usage O(n) instead of O(n?)? What data structure is taking the largest
contribution to the memory increase in your solution? Such prompts reinforce
conceptual metacognition and align with the idea of implicit scaffolding [12] , where
learners are guided toward insight without direct instruction, keeping the learning
flow intact while deepening understanding.

4. Future Vision: Constraint-Oriented Learning Tools

We propose a future tool that lets students set a space budget at the start (e.g.,
O(log n)) and builds awareness around constraints like a canvas size in design.
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Table 9. Proposed vs Existing Tool Behavior

Tool Current Behaviour

Proposed Conceptual

Behavior

GitHub Copilot Completes code Adds memory usage

annotations with reasoning

ChatGPT Explains time/space only if asked  Proactively surfaces spatial
trade-offs
LeetCode Reports time/space post- Visualizes growth
submission dynamically during
solution
Khan Academy AMP Validates correctness Adds space-focused

prompts post-submission

Table 10. Metric-Based vs Constraint-Based Thinking

Design Mode Example Cognitive Impact

Metric-Based O(n?) calculated after code Post hoc evaluation, low

reflection

Real-time trade-off
awareness, structural play

Constraint-Based O(log n) budget set before design

Visual Tracker Heatmap or stack graph Builds spatial intuition and

abstraction skill

5. Theoretical Framework: Why These Tools Work

These innovations are deeply rooted in learning theory:

Vygotsky’s Zone of Proximal Development (ZPD): Students learn best when
supported just beyond their current level; Al prompts act as real-time scaffolds.
Bruner’s Scaffolding: Visual guides and prompts serve as temporary support
structures that gradually fade as students internalize conceptual knowledge.
Constructivist Learning: Students develop understanding by actively engaging with
abstract principles. Conceptual space tools make these abstractions tangible and
manipulable. Visual framework showing Vygotsky — Bruner — Constructivism —
Al as Bridge to Abstraction

Vygotsky's ZPD
Tools like space-aware prompts help

urrent level with scaffolded support, maintaining engagement

Bruner's Scaffolding
Reflection prompts and visual

hat gradually fade as leamers interalize space complexity

Constructivist Theory
Students leam by actively constructing kne

Al as a Bridge t
These learning theor!
conceptual dept

wered scaffolding tha
struggle, and spatial reasoning

Figure 5. Theoretical Grounding of Conceptual Space Tools
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3.5. From Memorization to Mechanization: Rethinking Dynamic Programming Strategy

3.5.1. From Memorization to Mechanization: Rethinking Dynamic Programming
Strategy

Traditional approaches to teaching dynamic programming (DP) in computer science
education often emphasize memorizing canonical problem templates—such as the “0/1
Knapsack,” “Longest Common Subsequence,” or “Fibonacci with memorization.”
Students are typically exposed to these problems through repetitive textbook exercises
or online tutorials that emphasize reproducing code structure rather than fostering
conceptual grasp of the underlying principles. While they may be taught the
terminology of “optimal substructure” or “overlapping subproblems,” they rarely
develop the capacity to independently identify or derive these properties. Consequently,
many students learn to match problems to pre-solved examples, leading to a surface-
level understanding of algorithmic thinking [15].

Such rote-learning exercises can be adequate in ensuring short-term evaluation but
cannot develop transferable skills of problem-solving. Luckily, a new chance to shape
the approach to DP is presented by the introduction of Al-enhanced learning conditions.
Intelligent tools accelerate the learning process through intuitive feedback mechanisms
and visualization opportunities, saving time and increasing the conceptual instinct of
any learner.

Dynamic programming is vertically opaque, but Al-enabled systems allow the latter
to be drawn like recursion trees, memorization patterns, and the workflow in solving
subproblems. The tools can be used not only to ensure that they are correct, but also to
assist students in constructing solutions that they might find hard to understand at first.

For instance, Table below, emerging tools offer diverse ways to scaffold student
learning:

Table 11. Al Tools Supporting Conceptual Learning in Dynamic Programming

Tool Name Functionality How It Chang-e s Learning
Practice
DPVis Visualizes recursion depth, Makes abstract recursion
memorization hit/miss patterns, concrete; students visually
and call graphs track how subproblems
overlap
SAKSHM-AI Uses code parsing and real-time Provides Al-guided
feedback to provide step-by-step  debugging and complexity
explanation insights as students write

or fix solutions

These tools reshape DP learning in three fundamental ways:

From copying to constructing logic: Instead of reusing known code, students are
guided to build logical structures independently. From guessing to visualizing
recursion: They can observe how recursion unfolds and how memorization optimizes
performance. From confusion to feedback: When errors occur, tools explain why —
turning mistakes into reflective learning opportunities.

This move can be accommodated in the contemporary approaches to education,
which values thinking long-term and metacognition rather than just getting the
problems solved. Research indicates that Al-directed teaching can also cause greater
reflection of students and the capacity to work out their own explanations [16].

However, there must be a balance between the Al assistance and the possibility of
thinking on their own. Although learning may be scaffolded by these tools, they are not
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to be used instead of the critical thinking skills needed in dealing with problems that
have not been encountered before. Students nevertheless have to be taught to apply DP
skills by being able to reason on the basis of challenges without basing everything on
automation [16].

3.6. Prompting for Optimality: Greedy Algorithms in the Age of Generative Al
3.6.1. Prompting for Optimality: Greedy Algorithms in the Age of Generative Al

In traditional algorithm classrooms, greedy strategies were a test of disciplined logic:
make a locally optimal choice and prove it leads to a global optimum. Students were
trained to weigh trade-offs, build counterexamples, and justify correctness. Problems
like Activity Selection or Huffman Coding demanded structured reasoning —not just
working code.

Al tools like ChatGPT and GitHub Copilot can now generate complete greedy
solutions from a single prompt. While this boosts accessibility, it risks collapsing
learning into mimicry. [18] found that students often bypass deeper reasoning, treating
outputs as templates rather than hypotheses to explore [18].

As an answer, programs such as Al-Lab [19] command students not only to request
responses, but also to defend greedy actions, contrast methods, and criticize solutions. In
particular, they ought to pose such questions like what is the reason Huffman Encoding
mixes the minimal frequencies, or make the Al systems crash on counterexamples.
Optimality in this case implies more than being correct in output, but also in insight into
when and why the strategy is successful.

Prompting becomes a scaffolded inquiry. The table below (adapted from [21]) shows
how prompt type influences cognitive depth:

Table 12. Prompt Types and Cognitive Impact in Greedy Algorithms

Prompt Type Example Cognitive Impact
Template “Give me code for Fractional Low
Knapsack”
Exploratory “Why does greedy work for Medium
Fractional but not 0/1 Knapsack?”
Diagnostic “Show when greedy coin change High
fails”
Comparative “Compare greedy with dynamic High
programming”

This is the core of prompt engineering: crafting queries that evoke reasoning, not just
responses [21]. One risk is mistaking correctness for understanding. A greedy solution to
Coin Change may work on U.S. coins but fail on (1, 3, 4)—unless prompted to test
counterexamples, the flaw is hidden. It describes this learning space as a “Socratic
playground,” where students challenge, revise, and probe Al answers.

Students using Al tools performed consistently better [22], with tighter score
distributions. While not algorithm-specific, this trend signals how Al, when scaffolded
properly, can boost outcomes. This raises key questions: Can Al learn greedy strategies
from prompts, or does it default to known patterns? Can prompting help Al reject greedy
logic where it fails (e.g., Coin Change)? Can we teach Al to justify or critique its own
strategy choices [20]? The goal is not to eliminate Al, but to use it as a cognitive partner.
Prompting, done right, becomes a form of proof-building —less about syntax, more about



Pak. J. Sci. Res. 2025, 4, 2(Suppl.) 40 of 41

structure. Greedy algorithms, once a test of logic, now ask a different question: Can
students still reason when the answer is instantly available?

Prompt Al

Al Generates Code

Conceptually
Sound?

Prompt for
Counterexamplles

Figure 6. Prompting Loop for Greedy Algorithm Comprehension
4. Assessment And Valuation

Conventional computer science education has not historically placed much value on
assessment processes. Before the advent of Al, assessment was typically based on the
correctness of the code: does the code run, and does it produce the expected output? Now
that students can generate complete, bug-free code using programs like ChatGPT or
GitHub Copilot, these surface-level criteria are no longer sufficient. A student may turn
in a fully functional recursive sorting method without writing or even understanding any
of the code. This calls for a shift in how we assess: rather than focusing on what students
produce, we need to pay closer attention to how they got there. Did they edit the Al-
generated output? Did they explain the code? Did they use the Al-generated output as a
base to debug and improve on? Did they provide a critique of the Al-generated output?
Two students may submit the same result, but one student may have a greater depth of
engagement with the code than the other student. If we adopt substantial reflection
methods designed for students--via inline comments interpreting the logic in their code,
verbal walkthroughs of their code, or even designing a set of learning activities prompting
students to keep Al-generated code version one in a draft state for debugging purposes--
then assessment and learning can combine to serve both a demonstration of
understanding and the metacognitive attributes of curiosity, iteration, and awareness of
tool use. In an assessment approach like this, the goal shifts toward evaluating growth
over perfection—focusing on learning, not just the final product.

5. Conclusion And Future Work

As Al tools become more ubiquitous in the information workspace of a computer
science student, educators are presented with the challenges of retaining the cognitive
burdens that algorithmic problem-solving used to demand. This paper has highlighted
that concepts such as divide and conquer, sorting, and algorithmic complexity need to be
re-conceptualized —not abandoned —to be meaningfully educationally situated in tool-
augmented contexts. We have suggested that instead of fighting Al, we should design
learning experiences that promote student questioning, critiquing, and building on what
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these tools create. We have suggested that future work look for structured classroom
interventions that use Al as more than a means to a quick answer, and utilize it as a co-
reasoning partner. How can Al tools support rather than replace thinking? What new
forms of assessment or engagement become possible when students are taught to work
with intelligent systems in a critical way? These questions will require us to apply
pedagogical imagination and technical insight. Moving forward, as our work
environments change, so too must we change how we teach and how we think about
teaching algorithmic understanding.
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